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In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to 
simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase 
flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface 
interactions between different phases are described by a conception of CSF. In this model, the sharp 
interfaces between different phases are separated by a narrow transition layers, and the kinetics and 
morphology evolution of phase separation would be characterized by an order parameter via Cahn–
Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for 
temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille 
flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the 
thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then 
thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results 
show that the predictions of present LBE agreed with the analytical solution/other numerical results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of the materials and aviation tech-
nology, the transport mechanism of interfacial thermodynamics 
under microgravity/zero gravity or in microfluidic system is one 
of the hot topics in space science. In the microgravity environ-
ment or the microfluidic devices, the effect of gravity is greatly 
eliminated or even disappeared, then different transports of the in-
terface dynamics are emerged. When the system has a nonuniform 
temperature distribution, there is a temperature gradient along the 
interface, which caused to a variation of the surface tension along 
the interface (the surface tension generally decreases with the in-
creased temperature for most fluids). This variable surface tension 
force could lead to a viscous stress, which could induce the fluid’s 
motion from a hotter region to a colder region. This phenomenon
is known as thermocapillary (Marangoni) convection, which plays 
a dominant role in microgravity [1] or microfluidic devices [2].

As one of the interesting investigations on thermocapillary con-
vection, the migration of an unconfined spherical droplet/bubble 
has been investigated extensively [3,1]. In Ref. [3], Young et al. first 
derived an analytical formulation for the terminal velocity of un-
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confined non-deformable drop with a linear temperature profile 
in the creeping flow limit. Since then, there have been numerous 
subsequent experimental or numerical studies to investigate such 
phenomenon [1].

As we know, experimental investigations on thermocapillary 
migration of droplet/bubble are hampered by gravitational effects 
which tend to mask the thermocapillary effect on terrestrial. To 
reduce such effects, the drop tower, sounding rockets, and aboard 
space shuttles are the basic ways to get a short time microgravity 
environment for investigating thermocapillary convection, while a 
long time microgravity experiment in space station is an expensive 
and crucial way, which depended on the aviation program in the 
whole world [4]. Although experimental investigations could help 
to understand the phenomena of thermocapillary flows in micro-
gravity/microfluidic devices, it is still difficult to precisely measure 
the local temperature and flow fields during the transport process 
of a droplet/bubble.

On the other hand, numerical method has been viewed as a sci-
entific method for the fluid dynamics, which has been successfully 
applied to the thermocapillary flows [5–12]. However, an efficient 
and precise description of phase interaction or its interfacial dy-
namics model is still a challenging task. In the literature, there are 
generally two clarifications of numerical methods for simulating 
thermocapillary flow: one is single phase Navier–Stokes equations 
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(NSE) based numerical method [5–8]; another is the two phase 
NSE based numerical method [9–12]. In the former method, the 
physical problem is mainly focused on dynamics of one phase, 
and the thermocapillary effect is included by interface boundary 
conditions, which is usually used to some simplified thermocapil-
lary convection problems. In the latter one, the detailed physical 
phenomena of the interface dynamics in both phases could be ob-
served, and there is no need to implement the interface boundary 
conditions throughout the computation except for the sharp in-
terface method. It is well understood that the interface dynamics 
of the two phase flow is just the result of molecular interactions 
between different phases. Thus, if we could design a model that 
could correctly describe such interaction process at microscopic 
level, the corresponding interface dynamics could be obtained at 
macroscopic level. The lattice Boltzmann method (LBE) is just one 
of the mesoscopic methods, which could be applied to model such 
interaction process [13,14,11,12,15]. In Refs. [11,12], the authors 
applied the color-fluid and phase field based LBE to model the 
CSF, while a LBE is used to temperature field with equal density 
[11] and a finite difference scheme is applied to solve the internal 
energy equation with unequal density [12], the numerical simula-
tions showed that both schemes could give satisfied results.

In this paper, we will extend previous continuous surface force 
(CSF) LBE to the thermocapillary flow, and the effect of the 
Marangoni force is included through the CSF formulation [16,11]. 
The evolution of interface is governed by the Cahn–Hilliard equa-
tion (CHE), which is solved by LBE, and a thermal LBE is derived 
from the kinetic theory for solving the scalar convection–diffusion 
energy equation. The rest of this paper is organized as follows. 
In Sec. 2, a continuous surface force formulation of LBE model 
is presented, and a LBE model for temperature field is proposed 
in Sec. 3, then some numerical simulations are conducted to vali-
date the models in Sec. 4, and finally a brief conclusion is given in 
Sec. 5.

2. LBE with continuous surface force

In general, surface tension is a function of local temperature in 
thermal multiphase system, so the effect of tangential gradient of 
the surface tension should be included in the CSF formulation, and 
the governing equation for the momentum could be written as

∂t(ρu) + ∇ · (ρuu) = −∇p + ∇ · S + F , (1)

where ρ is the fluid density, u is the velocity, p is the hydrody-
namic pressure, S is the viscous stress term and the interface force 
F in Eq. (1) is given as [16]

F = −σκδn + ∇sσδ (2)

where σ is the surface tension, κ is the total curvature, δ is a 
regularized delta function, n is the outward pointing unit normal 
vector, and ∇s = (I − nn) · ∇ is the surface gradient operator. The 
first term on the right hand side of Eq. (2) is the normal sur-
face tension force, and the second is the tangential force which is 
the result of the nonuniform surface tension. Alternately, one may 
write F in a stress formulation

F = ∇ · [(I − nn)σ δ] (3)

With this interface force formulation in Eq. (2), a diffuse inter-
face formulation of F could be written as

F = (−σ∇ · nn + ∇sσ)εα|∇c|2 (4)

where n = ∇c/|∇c| with c the order parameter, ε is a small pa-
rameter related to the interface thickness and α is a normalized 
constant to be determined later. Comparing with Eqs. (2) and (4), 
the curvature κ relates to the unit normal vector n as κ = ∇ · n

and the regularized delta function δ relates to the order parameter 
as δ = εα|∇c|2.

In thermocapillary flow, the flow is driven by surface tension 
force which is a function of the temperature. For simplicity, we 
assume that the relation of the surface tension to the temperature 
is a linear relation in present work

σ = σ0 + σT (T − T0), (5)

where σ0 is the surface tension at the reference temperature T0, 
σT = ∂σ/∂T is the rate of change of interfacial tension with tem-
perature, and T is local temperature.

With the formulations of Eqs. (4) and (5), we can derive a sim-
ilar incompressible LBE model with CSF for the fluid flow [13–15]

f i(x + ξ iδt, t + δt) − f i(x, t)

= −ω( f i − f (eq)

i ) + δt(1 − ω
2 )[F · (ξ i − u)
i(u)

+ (ξ i − u) · ∇(ρc2
s )(
i(u) − 
i(0))], (6)

where f i is the density distribution function, ξ i is the molecular 
velocity, δt is the time step, ω = 1/τ f is the relaxation rate with 
τ f the relaxation time, and f (eq)

i is equilibrium density distribution 
function which is given as
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and 
i(u) is given as
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where ωi is the weight coefficient depending on the number of 
discrete velocity ξ i , cs is sound speed. The dynamic pressure and 
velocity defined by the velocity moments of the density distribu-
tion function are given by

p =
∑

i

f i + δt

2
u · ∇ρc2

s , ρc2
s u =

∑
i

ξ i f i + δt

2
F (9)

Through the Chapman–Enskog (CE) analysis, the following gov-
erning equations could be obtained

∇ · u = 0, (10)

∂t(ρu) + ∇ · (ρuu) = −∇p + ∇ · S + F , (11)

where the viscous stress S = η(∇u + u∇) with viscosity η =
ρc2

s (τ f − 1/2)δt .
In the phase field theory, the kinetics and morphology evo-

lution of phase separation is characterized by CHE via an order 
parameter c. It is usually used to identify the two phase region, 
where c = c1 occupied by fluid 1, and c = c2 occupied by fluid 2. 
The mixing free energy of such fluid for the isothermal system 
without the solid boundaries can be written as

E =
∫

[E0 + ε2

2
|∇c|2]d,

where E0 is a bulk energy, which is related to the bulk chemi-
cal potential by μ0 = ∂c E0. In the phase field theory, E0 can be 
approximated by E0(c) = β(c − c1)

2(c − c2)
2 with β a constant co-

efficient, c1 and c2 respectively the corresponding order parameter 
at fluid 1 and fluid 2. For planar interface at z = 0 in an equi-
librium system, the distribution of the order parameter has the 
following analytical solution

c(z) = c1 + c2

2
+ c1 − c2

2
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z

2
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