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Propagation of light in a metamaterial medium which mimics curved spacetime and acts like a black hole 
is studied. We show that for a particular type of spacetimes and wave polarization, the time dilation 
appears as dielectric permittivity, while the spatial curvature manifests as magnetic permeability. The 
optical analogue to the relativistic Hamiltonian which determines the ray paths (null geodesics) in the 
anisotropic metamaterial is obtained. By applying the formalism to the Schwarzschild metric, we compare 
the ray paths with full-wave simulations in the equivalent optical medium.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the hot topics of modern technology is to build artifi-
cial materials whose permittivity and permeability can be properly 
engineered by incorporating structural elements of subwavelength 
sizes. As a result, one can create materials (called metamaterials) 
with the desired electromagnetic response which offers new op-
portunities for realizing such exotic phenomena as negative refrac-
tion, cloaking, super-lenses for subwavelength imaging, microan-
tennas, etc. [1,2].

Recently, it has also been recognized that metamaterials can 
be used to mimic general-relativity phenomena [3,4]. The propa-
gation of electromagnetic waves in curved spacetime is formally 
equivalent to the propagation in flat spacetime in a certain inho-
mogeneous anisotropic or bianisotropic medium [5–12]. Based on 
this equivalence, different general relativity phenomena have been 
discussed from the point of view of possible realization in meta-
materials: optical analogues of black holes [13–18], Schwarzschild 
spacetime [12,19], de Sitter spacetime [20–22], cosmic strings [23,
24], wormholes [25], Hawking radiation [26], the “Big Bang” and 
cosmological inflation [27,28], colliding gravitational waves [29], 
among others.

The deflection of light waves in gradient-index optical materi-
als mimicking optical black holes was studied theoretically [13,14,
18] and experimentally [15–18]. These materials, called by authors 
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“omnidirectional electromagnetic absorbers”, are characterized by 
an isotropic effective refractive index. A real cosmological black 
hole (BH) can often be described by an anisotropic spacetime, as, 
for example, the case of the Schwarzschild BH. For that case, one 
should determine the permittivity and permeability tensors instead 
of the refractive index in order to introduce the equivalent optical 
medium [12,19]. Chen et al. [19] simulated the wave propagation 
outside the Schwarzschild BH and observed in their numerical re-
sults the phenomenon of “photon sphere”, which is an important 
feature of the BH system. It would be interesting to go further and 
study the propagation of light waves in optically anisotropic media 
which mimic cosmological BHs and compare the results with ray 
paths obtained from the Hamiltonian method.

The aim of this letter is twofold. First, we determine the con-
stitutive relations of an inhomogeneous anisotropic medium which 
is formally equivalent to the static spacetime metric obeying rota-
tional symmetries and can be applied, in principle, to the medium 
either in isotropic or anisotropic form. Second, by making use of 
the eikonal approximation to the wave equation, we obtain the 
expression for the optical Hamiltonian which we found to be iden-
tical to the one obtained from general relativity for null geodesics, 
but different from the optical Hamiltonian used in Refs. [13,15,
30,31]. Then we apply the formalism to the Schwarzschild space-
time that is a solution to the Einstein field equations in vacuum 
[32]. We compare the wave propagation with the ray dynamics 
outside the BH in the effective medium and obtain a very good 
correspondence. As an interesting feature we find that light does 
not propagate in the direction of the wave normal, there is an an-
gle between the wave velocity and the ray velocity. The obtained 
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results are discussed from the point of view of metamaterial im-
plementation.

2. General relativity in a metamaterial medium

2.1. Medium parameters

Long time ago, Tamm pointed out the parallels between 
anisotropic crystals and curved spacetimes [5]. Later studies 
showed [6–11] that the propagation of light in empty curved space 
distorted by a gravitational field is formally equivalent to light 
propagation in flat space filled with an inhomogeneous anisotropic 
medium.

Indeed, consider a spacetime background with a general met-
ric1

ds2 = g00 dt2 + 2g0i dt dxi + gij dxi dx j, (1)

where i, j = 1, 2, 3 run over arbitrary spatial coordinates. Then, it 
can be shown [11] that the covariant Maxwell’s equations written 
in curved coordinates can be transformed into their standard form 
for flat space but in the presence of an effective medium. The con-
stitutive relations of the equivalent medium have been found in 
the form [7]:

Di = εi j E j − (� × H)i, Bi = μi j H j + (� × E)i, (2)

which connect the fields D, B, E and H via nontrivial permittivity 
and permeability tensors

εi j = μi j = −
√−g

g00
gij (3)

and a vector � given by

�i = − g0i

g00
. (4)

Here, gij is the inverse of gij and g is the determinant of the full 
spacetime metric gμν , with μ, ν = 0, 1, 2, 3. Note that the infor-
mation about the gravitational field is essentially embedded in the 
material properties of the effective medium: the tensors εi j , μi j

which are symmetric and should be equal, and the vector � which 
couples the electric and magnetic fields. The invention of meta-
materials during the last decade [1,2] opened up the possibility 
to design electromagnetic media corresponding to different space-
times [3,4,19–29].

In this letter, we consider a static spacetime metric associ-
ated with a spherically symmetric cosmological BH. Due to time-
reversal symmetry, g0i = 0 and the coupling between the electric 
and magnetic fields vanishes, � = 0. The metric (1) in (t, r, θ, ϕ)

coordinates can then be written in a generic form as [32]

ds2 = g00(r)dt2 + grr(r)
{

dr2 + f (r) [r2 dθ2 + r2 sin2 θ dϕ2]
}

,

(5)

where f is the “anisotropic factor”. Note that the metric (5) obeys 
the rotational symmetries in the three-dimensional (r, θ, ϕ) space.

Then, we have to project the metric (5) into a flat background 
to obtain the medium parameters in the Cartesian coordinate sys-
tem. To do that, we apply a coordinate transformation and, from 
Eq. (3), we get the permittivity and permeability tensors in the 
form:

1 From now on we follow the standard notations for covariant (subindices) and 
contravariant (superindices) quantities.

εi j = μi j =
√

− grr

g00

[
δi j − (1 − f )

xix j

r2

]
, (6)

where δi j is the Kronecker delta, r = √
x2 + y2 + z2, and we de-

noted the Cartesian coordinates (x1, x2, x3) ≡ (x, y, z). It is seen 
that whenever f �= 1, the permittivity and permeability tensors 
contain the off-diagonal elements and the equivalent medium is 
essentially anisotropic. Only in the case of f = 1, the off-diagonal 
elements vanish and the medium becomes completely isotropic 
with all the diagonal elements equal to the refractive index: n(r) =√−grr/g00. Note that in general relativity the spacetime with
f = 1 in Eq. (5) is said to be conformal to flat space. Every static 
spherically symmetric spacetime with f �= 1 can be converted to 
conformally flat form by an appropriate transformation of the ra-
dial coordinate: r → ρ . The new radial coordinate is obtained by

ρ = r exp

⎧⎨
⎩

∞∫
r

[
1 − 1√

f (r′)

]
dr′

r′

⎫⎬
⎭ , (7)

where the isotropic boundary condition at infinity, f (∞) = 1, is 
taken into account. The line element in the (t, ρ, θ, ϕ) isotropic co-
ordinates takes the conformally flat form:

ds2 = g00[r(ρ)]dt2 + 	(ρ) (dρ2 + ρ2 sin2 θ dϕ2 + ρ2dθ2), (8)

where the time dilation term g00 and the conformal factor 	 =
grr f r2/ρ2 are calculated by means of the function r(ρ) which 
should be obtained by inverting (7). Thus, the permittivity and 
permeability tensors are simply reduced to the isotropic refractive 
index:

εi j = μi j = δi j

√
− 	

g00
≡ δi j n(ρ). (9)

The equivalent medium determined by Eq. (9) is still inhomoge-
neous since the refractive index varies with the radial coordinate, 
but the light velocity in the medium becomes isotropic, a property 
that is much simpler to implement in metamaterial design.

In what follows, we will compare the results for light propaga-
tion in two different equivalent media – isotropic and anisotropic – 
both corresponding to the same spacetime metric in order to see 
the physical differences.

2.2. Electromagnetic fields. TE and TM polarizations

The results from the previous section indicate that an electro-
magnetic field can be thought of as propagating in flat background 
but in the presence of a medium whose properties are constructed 
from a curved spacetime. The fields, for the static case we consider, 
are related by:

Di = εi j E j, Bi = μi j H j. (10)

Due to the anisotropy of the medium for the metric in noncon-
formally flat form, the electric displacement field D is not in the 
direction of E, and the magnetic induction field B is not in the 
direction of H. To simplify the treatment of the problem, we con-
sider the propagation of light in the equatorial plane, z = 0. In 
such a case, one of the anisotropies – electric or magnetic – can 
be eliminated.

Indeed, consider the TE polarization for an electromagnetic 
wave for which E is perpendicular to the x–y plane. Equation (6)
for z = 0 leads to εxz = εyz = 0, hence the directions of D and 
E coincide. This means that εzz is the only relevant matrix ele-
ment which connects the nonzero electric components of the field: 
Dz = εzz Ez , and the electric anisotropy of the medium is irrele-
vant. As for the magnetic components, we obtain μxz = μyz = 0, 
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