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This letter focuses on studying Lie symmetries and their inverse problems of the fractional nonholonomic 
Hamilton systems. Based on the invariance of the fractional motion equations, constraint equations and 
virtual displacement restrictive conditions of the systems under the infinitesimal transformation with 
respect to the time and generalized coordinates, the Lie symmetries and conserved quantities of the 
fractional nonholonomic Hamilton system are discussed and the corresponding definitions, determining 
equations, limiting equations, additional restricting equations and Lie theorems are given. The letter 
also systematically studies inverse theorems of Lie symmetries of the fractional nonholonomic Hamilton 
systems. Finally, an example is discussed to illustrate theses results.
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1. Introduction

It is well known that the fractional derivative has been ap-
plied in physics and engineering [1,2], and becomes one of the 
most powerful and widely useful tools in describing and explain-
ing some physical complex systems [3–5]. Recently, Riewe investi-
gated the fractional variational problems and obtained the Euler–
Lagrange equations for both conservative and non-conservative 
systems [6,7]. Agrawal presented the formulation of fractional 
Euler–Lagrange equations by using the left and right fractional 
derivatives in terms of Riemann–Liouville fractional derivatives [8]. 
The symmetries and conservation laws [9–21] have also been ex-
tended to fractional derivative systems, such as Torres proved a 
fractional Noether’s theorem of Euler–Lagrange equations [22], Ma-
linowska obtained the fractional Noether-type theorem for con-
servative and nonconservative generalized physical systems [23], 
Zhou et al. studied the Noether symmetry theories of the fractional 
Hamiltonian systems [24]. However, previous work so far has been 
limited to Noether symmetry theorems [25–28]. Sun gave the frac-
tional first-order and second-order extensions form of Lie group 
transformation, and the corresponding Lie symmetries of fractional 
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nonholonomic systems were discussed [29]. Therefore, the study of 
fractional Lie symmetries of systems has attracted much attention.

In this letter, we provide the Lie symmetries and their inverse 
problems of fractional nonholonomic Hamilton systems. The out-
line of this paper is as follows. In Section 2, we present a brief 
summary of the definitions and properties in terms of Riemann–
Liouville fractional derivatives. Section 3 discusses the equations 
of motion of fractional nonholonomic Hamilton systems. Section 4
provides a full Lie symmetry of the systems by introducing in-
finitesimal transformations with respect to time, generalized coor-
dinates and generalized momenta. In Section 5, the inverse prob-
lems of Lie symmetries of fractional nonholonomic Hamilton sys-
tems are presented. Finally, Section 6 discusses an example to il-
lustrate the above results.

2. Riemann–Liouville fractional derivatives

We present here a brief summary of definitions and properties 
in terms of Riemann–Liouville fractional derivatives [30].

Definition 1. Let f be a continuous and integrable function in the 
interval [a, b]. For all t ∈ [a, b], the left Riemann–Liouville frac-
tional derivatives a Dα

t f (t) and the right Riemann–Liouville frac-
tional derivatives t Dα

b f (t) are defined as follows

a Dα
t f (t) = 1

�(n − α)

(
d

dt

)n t∫
a

(t − τ )n−α−1 f (τ )dτ , (1)
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t Dα
b f (t) = 1

�(n − α)

(
− d

dt

)n b∫
t

(τ − t)n−α−1 f (τ )dτ , (2)

where α is the order of the derivatives such that n − 1 ≤ α < n, 
n ∈N, � is the Euler gamma function.

Remark 1. If α is an integer, the fractional derivatives (1) and (2)
change into the standard derivatives, i.e.

a Dα
t f (t) =

(
d

dt

)α

f (t),

t Dα
b f (t) =

(
− d

dt

)α

f (t).

Theorem 1. Let f and g be two continuous functions defined on the in-
terval [a, b], and φ , ϕ are constants. Then for all t ∈ [a, b], the following 
property holds

a Dα
t

[
ϕ f (t) + φg(t)

] = ϕa Dα
t f (t) + φa Dα

t g(t). (3)

Remark 2. In general, the Riemann–Liouville fractional derivative 
of a constant is not equal to zero. More precisely, one has

a Dα
t c = c

�(1 − α)
(t − a)−α. (4)

3. Fractional nonholonomic Hamilton equations

The fractional nonholonomic system is described by n general-
ized coordinates qk (k = 1, · · · , n), subjected to the g ideal bilateral 
fractional nonholonomic constraints of the form

fγ = fγ
(
t,qk, a Dα

t qk, t Dβ

b qk
)

(γ = 1, · · · , g), (5)

which satisfy the Appell–Chetaev’s condition

∂ fγ
∂a Dα

t qk
δqk = 0,

∂ fγ

∂t Dβ

b qk

δqk = 0 (k = 1, · · · ,n), (6)

the Einstein summation convention is adopted in this letter.
The fractional nonholonomic system is described by the La-

grange equations [24]:

∂L

∂qk
+ t Dα

b
∂L

∂a Dα
t qk

+ a Dβ
t

∂L

∂t Dβ

b qk

+ Q ′′
k + λγ

∂ fγ
∂a Dα

t qk
+ λγ

∂ fγ

∂t Dβ

b qk

= 0, (7)

where L = L(t, qk, a Dα
t qk, t Dβ

b qk) is the fractional Lagrangian, Q ′′
k

are the nonconservative forces and λγ are the Lagrange multipliers.
Eqs. (7) can be written in an equivalent form

∂L

∂qk
+ t Dα

b
∂L

∂a Dα
t qk

+ a Dβ
t

∂L

∂t Dβ

b qk

= −Q ′′
k − �k, (8)

where

�k = �k
(
t,qk, a Dα

t qk, t Dβ

b qk
) = λγ

∂ fγ
∂a Dα

t qk
+ λγ

∂ fγ

∂t Dβ

b qk

. (9)

Let us introduce the fractional generalized momenta [31]

pα
k = ∂L

∂a Dα
t qk

, pβ

k = ∂L

∂t Dβ

b qk

. (10)

The Hamiltonian depending on the fractional derivatives can be 
expressed as

H = pα
k a Dα

t qk + pβ

k t Dβ

b qk − L. (11)

Calculating the total differential of this Hamiltonian, we have

dH = dpα
k a Dα

t qk + pα
k da Dα

t qk + dpβ

k t Dβ

b qk

+ pβ

k dt Dβ

b qk − dL. (12)

From Eqs. (8), (10) and (12), one obtains

dH = dpα
k a Dα

t qk + dpβ

k t Dβ

b qk

+ (
t Dα

b pα
k + a Dβ

t pβ

k + Q ′′
k + �k

)
dqk − ∂L

∂t
dt. (13)

This means that the Hamiltonian is a function of the form H =
H(t, qk, pα

k , pβ

k ), so we may express Eq. (13) in the form

dH = ∂ H

∂t
dt + ∂ H

∂qk
dqk + ∂ H

∂ pα
k

dpα
k + ∂ H

∂ pβ

k

dpβ

k . (14)

Comparing Eq. (13) with Eq. (14), we obtain the following frac-
tional Hamilton equations of nonholonomic system

t Dα
b pα

k + a Dβ
t pβ

k = ∂ H

∂qk
− Q̃ ′′

k − �̃k,

a Dα
t qk = ∂ H

∂ pα
k

, t Dβ

b qk = ∂ H

∂ pβ

k

,
∂ H

∂t
= −∂L

∂t
, (15)

where

Q̃ ′′
k = Q̃ ′′

k

(
t,qk, pα

k , pβ

k

)
,

�̃k = �̃k
(
t,qk, pα

k , pβ

k

)
. (16)

Therefore, the fractional nonholonomic constraints (5) can be 
written as

f̃γ = f̃γ
(
t,qk, pα

k , pβ

k

)
(γ = 1, · · · , g). (17)

4. Lie symmetries of fractional nonholonomic Hamilton systems

Let us introduce the infinitesimal transformations with respect 
to time, generalized coordinates and generalized momenta

t∗ = t + 
t,

q∗
k

(
t∗) = qk(t) + 
qk,(

pα
k

)∗(
t∗) = pα

k (t) + 
pα
k ,(

pβ

k

)∗(
t∗) = pβ

k (t) + 
pβ

k , (18)

and their expansion formulae

t∗ = t + εξ
(
t,qk, pα

k , pβ

k

) + o(ε),

q∗
k

(
t∗) = qk(t) + εηk

(
t,qk, pα

k , pβ

k

) + o(ε),(
pα

k

)∗(
t∗) = pα

k (t) + εμα
k

(
t,qk, pα

k , pβ

k

) + o(ε),(
pβ

k

)∗(
t∗) = pβ

k (t) + εμ
β

k

(
t,qk, pα

k , pβ

k

) + o(ε), (19)

where ε is a small parameter, and ξ , ηk , μα
k , μβ

k are infinitesimal 
generators.

The relationships between the isochronous variation and the 
complete variation are given by [32]

δqk = 
qk − q̇k
t, δa Dα
t qk = a Dα

t δqk,

δt Dβ

b qk = t Dβ

b δqk, (20)
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