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In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on
a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific
information of responses associated with a particular stimulus. The theoretical and numerical analyses of
SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which
leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure
of average mutual information, can characterize the noise benefits in finer detail for describing the
enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility
in the design and implementation of a SSR coding scheme.

© 2015 Elsevier B.V. All rights reserved.

It is now a well-known fact that noise can sometimes improve,
without degrading, the responses of certain nonlinear systems. This
viewpoint is primarily motivated by the phenomenon of stochas-
tic resonance (SR) [1-3], where a suitable amount of noise brings
an optimized system response characterized by various measures,
such as spectral amplification [4], correlation coefficient [5], signal-
to-noise ratio [6,7], and mutual information [8]. In its original
form, SR often applies to a noise-enhanced subthreshold signal
[1-5]. However, in a parallel summing network, a new form of
SR termed suprathreshold stochastic resonance (SSR) results in the
maximum input-output mutual information at a non-zero level of
noise intensity, even if the input signal is predominantly above the
threshold [8]. The information content in each individual subsys-
tem is monotonically decreased by the addition of noise, but the
summed outputs from all subsystems yield a net gain in informa-
tion [8-17].

The case of SSR is now well established as an important
paradigm that suggests neuronal noise can possibly have a ben-
eficial role in sensory systems [9-11]. This paradigm is based on
the facts that there are large numbers of interconnected neurons
in the nervous system of animals and humans with variations in
structure, function and size, and noise permeates every level of
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the nervous system, from the perception of sensory signals to the
generation of motor responses [18,19]. The foregoing nervous sys-
tem features indicate that the potential exploitation of SSR in a
neuronal population stands as an interesting question in neuro-
science, relevant for instance to sensory neurons [13,20], cochlear
implants [10,11,14], motion detection [15], and stochastic pooling
sensor networks [21-23]. These research results show that SSR
does appear to serve as an efficient coding strategy of informa-
tion transformation—providing a possible explanation of the role
of noise in human sensory processes [8,10,11,13,16].

Mutual information is often used to calculate the information
gain or the reduction of uncertainty of the neuronal responses
[24]. However, it cannot address which particular stimuli or re-
sponses are significant in information transmission [25,26]. There-
fore, based on the specific information [25], Butts proposes a new
measure of stimulus-specific information (SSI) defined as the aver-
age reduction in the uncertainty of one observation given a partic-
ular stimulus [26]. This information bearing measure of SSI can be
calculated without prior knowledge about the coding scheme, and
is also robust to nonlinearities in the system [26]. Recent studies of
SSI give rise to a number of interesting results: The effect of vari-
ability on SSI illustrates that the best encoded stimulus with the
maximum SSI can change systematically from the high-slope re-
gion of tuning curve for low noise to the peak of the tuning curve
for high noise [27]. The neuronal encoding of sound frequency in
the auditory cortex shows that the maximum SSI is always at the
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best frequency and never in the tuning curve tails [28]. In finite
neural populations, the shape of the marginal SSI can converge
toward that of the Fisher information as the population size in-
creases, and predict the best encoded stimulus precisely [29]. In
this paper, we are particularly interested in the noise benefits in
enhancing the encoding efficiency of the stimulus in a population
of neurons. The obtained theoretical and numerical results show
that the SSIs not only straightforwardly explicate how much infor-
mation a neuronal population provides about a particular stimulus,
but also illustrate how effectively each stimulus is enhanced by the
optimal noise level to transmit more information via the mecha-
nism of SSR. The SSI measure is particularly useful in making an
analytical observation of the positive role of noise, and offers an
interesting insight into the application of SSR to neuronal coding
schemes.

1. Information measures

Consider a neural system with an ensemble of stimuli X and
whose behavior can be classified in a set of responses Y, the mu-
tual information between the ensemble of stimuli X and the set of
responses Y is given by

I(X,Y)=H(X) — HX]|Y), (1)

where the information entropy of the stimulus ensemble [24]

H(X) == Px(x)log, Px(x), (2)
xeX

and the average conditional entropy [24]

HXIY) =Y Py(»)H(X|y)

yeY
=" Py»)[= X Py log, Pxy) . 3)
yey xeX

The conditional entropy associated with a particular response y is
defined as H(X|y) [24], and lowercase characters x and y repre-
sent an individual observation within ensembles.

The mutual information can be used to quantify the informa-
tion provided by an entire response ensemble about an entire
stimulus ensemble, but it is often of interest to know which par-
ticular stimuli are effectively encoded by the system, and which
particular responses communicate information about the stimuli
[25-29]. Then, DeWeese and Meister [25] propose the specific in-
formation measure

[sp(y) = H(X) — H(X]y), (4)

which is an appropriate representation of the degree to which a
given response y contributes to the overall mutual information in
Eq. (1) [25,26]. However, due to the asymmetry of stimulus and re-
sponse with respect to causality, the specific information of a par-
ticular stimulus Isp(x) = H(Y) — H(Y|x) fails to select the effective
encoded stimuli [26,27]. The largest value of Isp(x) corresponds to
those stimuli that have few responses associated with them, with-
out regard to whether these responses are informative or not [26].
Therefore, Butts defines a new information theoretic measure of
SSI as

Isi(0) =Y P(yI0Isp(¥), (5)

yeY

which explicitly represents the average specific information of the
response ensemble Y that occurs when a particular stimulus x is
present [26]. It is also noted that the average SSI over the entire
ensemble of stimulus yields the mutual information, as follows

I(X,Y) =) Py®)]ssi(¥). (6)

xeX

In Eq. (6), it is interesting to note that the term Py (x)Isi(x) rep-
resents the average informative contribution of each stimulus to
the mutual information. Therefore, we can define the encoding ef-
ficiency of each stimulus as

Essi(x)= PX(X)Issi(X), (7)

which can be considered as a useful metric to characterize the pos-
itive role of noise in the enhancement of the encoding efficiency
of neuronal information transmission.

2. Binary threshold SSR model

Consider a typical SSR model consisting of N binary threshold
neurons, and each neuron is subject to the same continuous stim-
ulus signal x(t) but independent noise components 7;(t) [8]. The
output y; is given by the neuronal response function

;>
yi= 1 le+ 771'_0, (8)
0 otherwise,
where 6 is the threshold level of the neuronal population. The
overall response is y = ZlN:] yi with probability mass function
Py(n) as y being equal to n forn=0,1,---, N [8,9]. Furthermore,
we assume that the noise distribution is fj, and the cumulative
distribution function is Fy, then the transition probability

P(11X) = P(x+1>60]x) =1— Fy(6 — ) 9)

is the conditional probability of neuron responses being in state 1.
Consequently, the conditional probability of neuron responses be-
ing in state 0 can be written as P(0|x) =1 — P(1|x) [8,9]. Noting
that, for any given stimulus value x, each device acts independently
under the influence of its own noise 7;, thus the probability that n
neurons are triggered accords with the binomial distribution

P(n|x) = CY P"(1]x) PN"(0x) (10)

with the binomial coefficient CY [8]. Therefore, the probability
mass function Py(n) can be calculated as

Py(n):/-P(n|x)Px(x)dx:C,IIVB(n), (11)

B(n):/P"(IIX)PN_"(OIX)PX(X)dx. (12)

Using Bayes’ theorem, the conditional probability for a particular
stimulus x knowing the response y =n is given by
P(n|x)Px(x
p(ﬂmzw. (13)
Py(n)

Then, the specific information Isp(n) in Eq. (4) can be written as
Isp(n) = H(X) — H(X|n)
= —/ Py(x)log Px(x)dx + / P(x|n) log, P(x|n)dx, (14)

with the differential entropy of stimulus signal H(X) and the con-
ditional entropy H(X|n). Based on Eqgs. (10) and (14), the SSI of a
particular stimulus value x can be expressed as

N
Isi(0) =Y P@X)I5p(n). (15)

n=0

Next, we specifically consider the generalized Gaussian stimulus
signal x(t) with its distribution
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