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In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on 
a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific 
information of responses associated with a particular stimulus. The theoretical and numerical analyses of 
SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which 
leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure 
of average mutual information, can characterize the noise benefits in finer detail for describing the 
enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility 
in the design and implementation of a SSR coding scheme.

© 2015 Elsevier B.V. All rights reserved.

It is now a well-known fact that noise can sometimes improve, 
without degrading, the responses of certain nonlinear systems. This 
viewpoint is primarily motivated by the phenomenon of stochas-
tic resonance (SR) [1–3], where a suitable amount of noise brings 
an optimized system response characterized by various measures, 
such as spectral amplification [4], correlation coefficient [5], signal-
to-noise ratio [6,7], and mutual information [8]. In its original 
form, SR often applies to a noise-enhanced subthreshold signal 
[1–5]. However, in a parallel summing network, a new form of 
SR termed suprathreshold stochastic resonance (SSR) results in the 
maximum input-output mutual information at a non-zero level of 
noise intensity, even if the input signal is predominantly above the 
threshold [8]. The information content in each individual subsys-
tem is monotonically decreased by the addition of noise, but the 
summed outputs from all subsystems yield a net gain in informa-
tion [8–17].

The case of SSR is now well established as an important 
paradigm that suggests neuronal noise can possibly have a ben-
eficial role in sensory systems [9–11]. This paradigm is based on 
the facts that there are large numbers of interconnected neurons 
in the nervous system of animals and humans with variations in 
structure, function and size, and noise permeates every level of 
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the nervous system, from the perception of sensory signals to the 
generation of motor responses [18,19]. The foregoing nervous sys-
tem features indicate that the potential exploitation of SSR in a 
neuronal population stands as an interesting question in neuro-
science, relevant for instance to sensory neurons [13,20], cochlear 
implants [10,11,14], motion detection [15], and stochastic pooling 
sensor networks [21–23]. These research results show that SSR 
does appear to serve as an efficient coding strategy of informa-
tion transformation—providing a possible explanation of the role 
of noise in human sensory processes [8,10,11,13,16].

Mutual information is often used to calculate the information 
gain or the reduction of uncertainty of the neuronal responses 
[24]. However, it cannot address which particular stimuli or re-
sponses are significant in information transmission [25,26]. There-
fore, based on the specific information [25], Butts proposes a new 
measure of stimulus-specific information (SSI) defined as the aver-
age reduction in the uncertainty of one observation given a partic-
ular stimulus [26]. This information bearing measure of SSI can be 
calculated without prior knowledge about the coding scheme, and 
is also robust to nonlinearities in the system [26]. Recent studies of 
SSI give rise to a number of interesting results: The effect of vari-
ability on SSI illustrates that the best encoded stimulus with the 
maximum SSI can change systematically from the high-slope re-
gion of tuning curve for low noise to the peak of the tuning curve 
for high noise [27]. The neuronal encoding of sound frequency in 
the auditory cortex shows that the maximum SSI is always at the 
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best frequency and never in the tuning curve tails [28]. In finite 
neural populations, the shape of the marginal SSI can converge 
toward that of the Fisher information as the population size in-
creases, and predict the best encoded stimulus precisely [29]. In 
this paper, we are particularly interested in the noise benefits in 
enhancing the encoding efficiency of the stimulus in a population 
of neurons. The obtained theoretical and numerical results show 
that the SSIs not only straightforwardly explicate how much infor-
mation a neuronal population provides about a particular stimulus, 
but also illustrate how effectively each stimulus is enhanced by the 
optimal noise level to transmit more information via the mecha-
nism of SSR. The SSI measure is particularly useful in making an 
analytical observation of the positive role of noise, and offers an 
interesting insight into the application of SSR to neuronal coding 
schemes.

1. Information measures

Consider a neural system with an ensemble of stimuli X and 
whose behavior can be classified in a set of responses Y , the mu-
tual information between the ensemble of stimuli X and the set of 
responses Y is given by

I(X, Y ) = H(X) − H(X |Y ), (1)

where the information entropy of the stimulus ensemble [24]

H(X) = −
∑
x∈X

P x(x) log2 P x(x), (2)

and the average conditional entropy [24]

H(X |Y ) =
∑
y∈Y

P y(y)H(X |y)

=
∑
y∈Y

P y(y)
[
−

∑
x∈X

P (x|y) log2 P (x|y)
]
. (3)

The conditional entropy associated with a particular response y is 
defined as H(X |y) [24], and lowercase characters x and y repre-
sent an individual observation within ensembles.

The mutual information can be used to quantify the informa-
tion provided by an entire response ensemble about an entire 
stimulus ensemble, but it is often of interest to know which par-
ticular stimuli are effectively encoded by the system, and which 
particular responses communicate information about the stimuli 
[25–29]. Then, DeWeese and Meister [25] propose the specific in-
formation measure

Isp(y) = H(X) − H(X |y), (4)

which is an appropriate representation of the degree to which a 
given response y contributes to the overall mutual information in 
Eq. (1) [25,26]. However, due to the asymmetry of stimulus and re-
sponse with respect to causality, the specific information of a par-
ticular stimulus Isp(x) = H(Y ) − H(Y |x) fails to select the effective 
encoded stimuli [26,27]. The largest value of Isp(x) corresponds to 
those stimuli that have few responses associated with them, with-
out regard to whether these responses are informative or not [26]. 
Therefore, Butts defines a new information theoretic measure of 
SSI as

Issi(x) =
∑
y∈Y

P (y|x)Isp(y), (5)

which explicitly represents the average specific information of the 
response ensemble Y that occurs when a particular stimulus x is 
present [26]. It is also noted that the average SSI over the entire 
ensemble of stimulus yields the mutual information, as follows

I(X, Y ) =
∑
x∈X

P x(x)Issi(x). (6)

In Eq. (6), it is interesting to note that the term P x(x)Issi(x) rep-
resents the average informative contribution of each stimulus to 
the mutual information. Therefore, we can define the encoding ef-
ficiency of each stimulus as

Essi(x) = P x(x)Issi(x), (7)

which can be considered as a useful metric to characterize the pos-
itive role of noise in the enhancement of the encoding efficiency 
of neuronal information transmission.

2. Binary threshold SSR model

Consider a typical SSR model consisting of N binary threshold 
neurons, and each neuron is subject to the same continuous stim-
ulus signal x(t) but independent noise components ηi(t) [8]. The 
output yi is given by the neuronal response function

yi =
{

1 if x + ηi ≥ θ,

0 otherwise,
(8)

where θ is the threshold level of the neuronal population. The 
overall response is y = ∑N

i=1 yi with probability mass function 
P y(n) as y being equal to n for n = 0, 1, · · · , N [8,9]. Furthermore, 
we assume that the noise distribution is fη and the cumulative 
distribution function is Fη , then the transition probability

P (1|x) = P (x + η > θ |x) = 1 − Fη(θ − x) (9)

is the conditional probability of neuron responses being in state 1. 
Consequently, the conditional probability of neuron responses be-
ing in state 0 can be written as P (0|x) = 1 − P (1|x) [8,9]. Noting 
that, for any given stimulus value x, each device acts independently 
under the influence of its own noise ηi , thus the probability that n
neurons are triggered accords with the binomial distribution

P (n|x) = C N
n Pn(1|x)P N−n(0|x) (10)

with the binomial coefficient C N
n [8]. Therefore, the probability 

mass function P y(n) can be calculated as

P y(n) =
∫

P (n|x)P x(x)dx = C N
n B(n), (11)

B(n) =
∫

Pn(1|x)P N−n(0|x)P x(x)dx. (12)

Using Bayes’ theorem, the conditional probability for a particular 
stimulus x knowing the response y = n is given by

P (x|n) = P (n|x)P x(x)

P y(n)
. (13)

Then, the specific information Isp(n) in Eq. (4) can be written as

Isp(n) = H(X) − H(X |n)

= −
∫

P x(x) log P x(x)dx +
∫

P (x|n) log2 P (x|n)dx, (14)

with the differential entropy of stimulus signal H(X) and the con-
ditional entropy H(X |n). Based on Eqs. (10) and (14), the SSI of a 
particular stimulus value x can be expressed as

Issi(x) =
N∑

n=0

P (n|x)Isp(n). (15)

Next, we specifically consider the generalized Gaussian stimulus 
signal x(t) with its distribution
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