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This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to 
a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. 
In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels 
and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-
dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example 
we will shed some light on the specific properties of a quantum integrable system with respect to those 
characteristic of superintegrable systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This work is devoted to a system that consists of an electron 
under an external magnetic field perpendicular to the x–y plane. 
The magnetic field is non-uniform, its intensity behaving as the 
inverse of the distance to the z-axis. In these conditions the clas-
sical system is integrable, but not superintegrable. This system can 
be restricted to the plane x–y, and in this sense it is quite in-
teresting to find its properties in the light of other well-known 
superintegrable systems, such as the Landau system of a constant 
perpendicular magnetic field or the planar Coulomb system. For in-
stance, in our present situation there can exist bounded, although 
non-periodic, motions or exclusively unbounded motions depend-
ing on the sign of the angular momentum. As the trajectories and 
motion can be obtained in closed implicit form, we can say that 
the system is solvable.

In the quantum framework of the Dirac equation the system is 
solvable too, and for such above mentioned sign, the solutions to 
the eigenvalue problem will be obtained. As the system is solvable, 
it is investigated whether the reduced radial matrix Hamiltonian 
belongs to a shape-invariant Hamiltonian hierarchy. In this context, 
the matrix intertwining operators will be characterized as well as 
the symmetries of the hierarchy. This implies that the solutions 
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can be obtained algebraically, by means of raising operators. We 
want to remark that we have found some new properties related 
to the matrix shape-invariance: (i) It can be realized by means of 
anti-intertwining operators, due to the fact that the Dirac equation 
has positive and negative eigenvalues; (ii) There is a wide freedom 
in the intertwining operators of the shape-invariance in the same 
hierarchy, in particular we have characterized a four parameter set 
of such operators; (iii) The symmetries of the shape-invariant hier-
archy of matrix Hamiltonians are shown to play an important role.

We will remark the most important properties of the spectrum 
of bound states of this integrable system with respect to those 
of superintegrable quantum systems (see for instance the review 
of Ref. [1] on superintegrability). The most striking difference is 
that it consists of a dense set of non-isolated points while the 
known superintegrable systems have a set of isolated points as the 
discrete spectrum. Contrary to some general belief, the spectrum 
is highly degenerated, although the system is not superintegrable 
[1–3]. We will also show how this system is algebraically solv-
able, but the involved operators have some important differences 
to those corresponding to superintegrable systems.

This work will develop and extend some methods introduced 
in a previous paper for a different problem [4]. The present paper 
is organized as follows. The system is introduced in its classical 
version along Section 2 showing the features of the classical trajec-
tories. The relativistic quantum system, in the frame of the Dirac 
equation, is analyzed in Section 3, where the discrete spectrum 
and eigenfunctions are obtained. In Section 4 the shape-invariant 
properties of the reduced radial matrix Hamiltonian are investi-
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Fig. 1. Effective potential for � = 1, 2, 3 and m0 = c = k = e = 1, μ = 0. The dash-
ing lines correspond to the energies E = 0.25 (bound trajectory) and E = 0.6
(unbounded trajectory). The dotted line separates the energies of bound and un-
bounded motions.

gated. Finally, Section 5 will be devoted to some remarks and 
conclusions.

2. Classical motion

We will consider an electron under the influence of a magnetic 
field with a rotational symmetry around the z-axis given by

B = (0,0,
k

ρ
) (1)

where ρ = √
x2 + y2 and k is a non-vanishing constant. Its vector 

potential takes the expression

A = k

ρ
(−y, x,0) (2)

or A = k (− sin θ, cos θ,0), in terms of the cylindrical coordinates 
(ρ, θ, z). Now, we want to describe the non-relativistic motion of 
an electron of mass m0, and charge e subject to this magnetic 
potential. The corresponding Hamiltonian using cylindrical coordi-
nates has the following form

H = P 2
ρ

2m0
+ (Pθ − ek

c ρ)2

2m0ρ2
+ P 2

z

2m0
(3)

where we recall the expressions of the canonical momenta

ρ̇ = Pρ

m0
, θ̇ = Pθ

m0ρ2
− ek

m0cρ
, ż = P z

m0
. (4)

Since the coordinates θ and z are cyclic the corresponding mo-
menta will be constants of motion: Pθ = � (the angular momen-
tum around z) and P z = μ (the linear momentum along z). Ac-
cording to (4), this means that the velocity ż will be constant but 
θ̇ will depend on the motion of ρ . After replacing these constants 
we are left with an effective Hamiltonian for the remaining vari-
able ρ ,

Heff(ρ) = P 2
ρ

2m0
+ �2

2m0ρ2
− ek�

m0cρ
+ e2k2

2m0c2
+ μ2

2m0

≡ P 2
ρ

2m0
+ V eff (ρ) (5)

where the product ek� must be positive if we want the effective 
potential V eff(ρ) to have a minimum and allow for bounded mo-
tions. A schematic plot of this potential for such a case can be seen 
in Fig. 1. A situation where ek� < 0 is represented in Fig. 2, where 
e = k = 1 and � = −1, −2, −3.

Thus, we have a classical system in a three dimensional space 
with three (independent) constants of motion: H , Pθ and P z . This 
means that our system is integrable, but not superintegrable. The 

Fig. 2. Effective potential for � = −1, −2, −3 with the same values of the other 
parameters as in Fig. 1.

Fig. 3. Trajectory for the electron for E = 0.25 in continuous line, bounded by the 
inner and outer circles in dashing lines. The values of the parameters are � = 1, 
μ = 0, m0 = 1, c = 1, k = 1, e = 1.

equation of the projection of trajectory on the x–y plane for an 
energy E can readily be obtained from (4) and (5). If μ2

2m0
≤ E <

e2k2

2m0c2 + μ2

2m0
this trajectory is bounded and the equation for such 

orbits is

θ (ρ) = −arcsin

(
�/ρ − ek/c√
2m0 E − μ2

)

− ek/c√
e2k2/c2 + μ2 − 2m0 E

×

arcsin
(e2k2/c2 + μ2 − 2m0 E)ρ − �ek/c

�
√

2m0 E − μ2
. (6)

A graphic of this type of bounded trajectories on the x–y plane is 
shown in Fig. 3. When E > e2k2

2m0c2 + μ2

2m0
, the motion is unbounded 

and it is given by

θ (ρ) = −arcsin

(
�/ρ − ek/c√
2m0 E − μ2

)

− ek/c√
2m0 E − e2k2/c2 − μ2

×

arccosh
(2m0 E − e2k2/c2 − μ2)ρ + �ek/c

�
√

2m0 E − μ2
. (7)

In Fig. 4 it is given the aspect of an unbounded trajectory. For both 
cases, the motion in the z-direction is uniform. The implicit time 
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