
Physics Letters A 380 (2016) 59–64

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

A measure of localization properties of one-dimensional single 

electron lattice systems

Longyan Gong a,b,c,∗, Wenjia Li a,b, Shengmei Zhao b, Weiwen Cheng b,c

a Information Physics Research Center and Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
b Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
c National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 May 2015
Received in revised form 15 September 
2015
Accepted 15 September 2015
Available online 26 September 2015
Communicated by A. Eisfeld

Keywords:
Anderson localization
The degree of localization

We propose a novel quantity to measure the degree of localization properties of various types of 
one-dimension single electron states. The quantity includes information about the spatial variation of 
probability density of quantum states. Numerical results show that it can distinguish localized states from 
delocalized ones, so it can be used as a fruitful index to monitor the localization–delocalization transition. 
Comparing with existing measures, such as geometric average density of states, inverse participation 
ratio, and quantum information entropies, our proposed quantity has some advantages over them.
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1. Introduction

As is well known, Anderson localization is a fundamental con-
cept in many-body physics [1]. The concept can be applied to 
many branches of physics, for instance, light waves, sound waves, 
and matter waves [2]. For electron systems, extensive studies have 
focused on metal–insulator transitions (MITs) or delocalization–
localization transitions [2–4]. For one-dimensional (1D) Anderson 
model, it is well known that all eigenstates are localized and 
there are no mobility edges separating localized and delocalized 
states [5]. However, the specific delocalized states and/or mobility 
edges have been found in 1D systems, such as determined po-
tential models [6–17], random potential models with short-range 
correlation [14–22] or long-range correlation [14,15,20,23]. Very 
recently, Anderson localization was experimentally observed for ul-
tracold atomic gases in disordered optical potential systems [24]
and photons in disordered superlattices [25].

How to measure the degree of localization is a challenging and 
important problem in the theory of Anderson localization. Until 
now, researchers have developed lots of quantities to characterize 
it, such as the Thouless exponent (or Lyapunov coefficient) [10–12,
20,23], multifractal properties [4,13], dynamics of wave function 

* Corresponding author at: Information Physics Research Center and Department 
of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 
210003, China. Tel.: +86 25 85866603.

E-mail addresses: lygong@njupt.edu.cn (L. Gong), zhaosm@njupt.edu.cn (S. Zhao), 
wwcheng@njupt.edu.cn (W. Cheng).

[18], geometric average density of states (GADOS) [14,26], inverse 
participation ratio (IPR) [12,20–22,27], quantum information en-
tropies [15–17,28], and many others [2–4]. These measures esti-
mate localization properties from different points of view. With 
finite-size scaling analysis, all these quantities can distinguish lo-
calized states from delocalized ones. These quantities can be used 
to confirm and complement each other. Some measures may be 
more useful than others when using specific numerical techniques.

In this work, considering the spatial variation of probability 
density, we propose a novel quantity as a measure of 1D elec-
tronic localization properties. We numerically studied it for four 
kinds of wave functions and found that it can distinguish local-
ized states from delocalized ones. Other standard measures, such 
as GADOS, IPR and quantum information entropies, do not include 
this position-dependent information. Comparing with them, our 
proposed quantity has some advantages.

The rest of the paper is organized as follows. In Section 2, we 
propose the measure of localization properties in single-electron 
systems. In Section 3, the measure is numerically tested in differ-
ent models. In Section 4, the measure compares to others. Finally, 
results are collected in Section 5.

2. Models and formulas

We consider an electron moving in a 1D lattice with L sites 
[16,17]. The corresponding tight-binding Hamiltonian is described 
by
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H =
L∑

�=1

ε�c†
�c� − t

L∑

�=1

(c†
�c�+1 + H .c.), (1)

where ε� is the on-site potential, t is a nearest-neighbor hop-
ping integral, c†

� (c�) are creation (annihilation) operators of the 
�th site. The site occupation basis is |n1,n2, . . . ,n�, . . . ,nL〉 =
c†n1

1 c†n2
2 . . . c†n�

� . . . c†nL
L |0〉, where n� = 0, or 1, and |0〉 is the vac-

uum. For an electron, 
∑L

�=1 n� = 1. If we write |�〉 = |0, . . . , 1�,

. . . , 0〉 = c†
�|0〉, the general wave function, i.e., eigenstate |β〉 with 

eigenenergy Eβ for Hamiltonian described in Eq. (1) is the super-
position

|β〉 =
L∑

�=1

φ
β
�

|�〉 =
L∑

�=1

φ
β
� c†

�
|0〉 . (2)

The probability density of |β〉 on the �th site is ρ� = |φβ
� |2, and 

the corresponding probability density sequence SPD
L = {ρ1, . . . , ρ�,

. . . , ρL}.
From Eqs. (1) and (2), we suppose a quantity P� = ∑�

k=1 ρk =∑�
k=1 |φβ

k |2, which is the local integrated DOS from the 1st site to 
the �th site. We propose a complex quantity

Aβ
L = 1

L

L∑

�=1

exp(i2π P�), (3)

where i = √−1. For simplicity, we omit β in Aβ
L unless otherwise 

specified. The modulus of AL , denoted by |AL | is used to measure 
localization properties of 1D quantum state |β〉 given in Eq. (2). 
From the definition, AL depends on the spatial variation of proba-
bility density sequences SPD

L = {ρ1, . . . , ρ�, . . . , ρL}. To demonstrate 
Eq. (3) intuitively, we give some examples. For an extended state 
that φβ

� = 1√
L

for all �, |AL | ≈ 0 at larger L. For a localized state 

that φβ
� = δ��0 (�0 is a given site), |AL | = 1. In other words, the 

two values of |AL | for the two specific states are as a calibration to 
measure the degree of localization for general quantum states. At 
the same time, the smaller the value |AL | is, the more delocalized 
the state is.

In fact, AL in Eq. (3) is inspired by the Friedel sum rule (FSR) 
[29–31]. The FSR can be stated as θ f (E2) − θ f (E1) ≈ π N(E2, E1). 
Here the Friedel phase θ f (E) = 1

2i ln(det[S(E)]), i.e., det[S(E)] =
exp(i2θ f (E)), where S is a scattering matrix and i = √−1. 
N(E2, E1) is the variation in the number of states in the energy 
interval [E1, E2] due to the scatterer. That means the θ f jumps by 
π when the integrated density changes by one particle. Therefore, 
not rigorously, AL can be as a quantity that takes account of the 
contributions of the local integrated DOS to the Friedel phase.

3. Numerical results

We numerically test the conclusion that AL can distinguish 
localized states from delocalized ones. First, we study it for one-
electron states with an exponential shape and with a power-law 
ones, respectively. Then we study it for one-electron eigenstates in 
the Harper model and in the slowly varying potential ones, respec-
tively. For the two models, we use the negative-eigenvalue count-
ing method to numerically get eigenstates with relatively larger 
lattice sizes [32].

3.1. Quantum states with an exponential shape

We first consider quantum states with an exponential shape, 
i.e.,

φ� = Ce− 1
2 (

�−L/2
ξ

)
, (4)

Fig. 1. (Color online.) |AL | as a function of ξR for quantum states with an exponen-
tial shape at L = 104, 106 and 109, respectively.

where the constant C is used to normalize states using 
L∑

�=1
|φβ

� |2 =
1 and � = 1, 2, . . . , L. It is known that the states are localized 
and the localization length can be characterized by ξ . The more 
smaller ξ , the more localized the state is.

For convenience of description, we define a reduced localization 
length ξR = 2ξ/L. In Fig. 1, we plot |AL | versus the correspond-
ing ξR at L = 104, 106 and 109, respectively. It shows that |AL |
monotonously decreases with ξR . As ξR → 0, |AL | → 1. For same 
ξR , |AL | is almost independent of lattice sizes L. In other words, for 
a certain localization length ξ , ξR = 2ξ/L will decrease with L. It 
means that the state becomes more localized as it is viewed from 
larger lattice size L. Especially ξR will decreases to zero as L → ∞, 
i.e., the state becomes most localized and the corresponding |AL |
approaches to 1. Therefore, |AL | can well reflect the localization 
properties of quantum states with an exponential shape.

3.2. Quantum states with a power-law shape

We then consider quantum states with a power-law shape, i.e.,

φ� = 1√
D

�−γ /2, (5)

where D =
L∑

�=1
�−γ is used to normalize the quantum state. 

They are mathematical quantum delocalized, critical, and localized 
states at 0 ≤ γ < 1, γ = 1 and γ > 1, respectively [33].

In Fig. 2(a), we plot |AL | versus γ at L = 104, 106, 109 and 
L → ∞, respectively. At a certain γ , we use the finite size scal-
ing to get the value of |AL | as L → ∞, denoted by |A∞

L |. The 
scaling function log 10(|A∞

L | − |AL |) = K log 10(1/L) is chosen to 
fit corresponding data, where |A∞

L | and K are two fitting param-
eters. Figs. 2(b), (c) and (d) give the scaling behavior of |AL | at 
γ = 0.5, 1.0 and 1.5, respectively. They show the scaling func-
tion can well fit corresponding data. For other γ , the results are 
similar. At L → ∞, Fig. 2(a) shows that, in the delocalized region 
(0 ≤ γ < 1), |A∞

L | increases from zero to almost near 1 as γ in-
creases, while in localized region (γ > 1), |A∞

L | are nearly equal 
to 1. Therefore, |AL | can well characterize the localization proper-
ties of quantum states with a power-law shape.

3.3. Eigenstates in the Harper model

For the Harper model [6–9,14,16], the on-site potential in 
Eq. (1) can be written as

ε� = λ cos(2πσ� + ϕ), (6)

where λ is the potential strength, σ is an irrational number, and 
ϕ is an initial phase. As a typical case, σ =

√
5−1
2 . The potential is 



Download English Version:

https://daneshyari.com/en/article/1859018

Download Persian Version:

https://daneshyari.com/article/1859018

Daneshyari.com

https://daneshyari.com/en/article/1859018
https://daneshyari.com/article/1859018
https://daneshyari.com

