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Problem of integrability for Hamiltonian systems with potentials that are algebraic thus multivalued 
functions of coordinates is discussed. Introducing potential as a new variable the original Hamiltonian 
system on 2n dimensional phase space is extended to 2n + 1 dimensional system with rational right-
hand sides. For extended system its non-canonical degenerated Poisson structure of constant rank 
2n and rational Hamiltonian is identified. For algebraic homogeneous potentials of non-zero rational 
homogeneity degree necessary integrability conditions are formulated. These conditions are deduced 
from an analysis of the differential Galois group of variational equations around particular solutions of a 
straight line type. Obtained integrability obstructions are applied to the class of monomial homogeneous 
potentials. Some integrable potentials satisfying these conditions are found.
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1. Introduction

In this paper we consider natural Hamiltonian systems with n
degrees of freedom for which Hamilton function has the form

H(q, p) = 1

2

n∑
i=1

p2
i + V (q), (1.1)

where V (q) is a potential; q = (q1, . . . , qn) and p = (p1, . . . , pn)

are canonical coordinates and momenta, respectively. Equations of 
motion read

d

dt
q = p,

d

dt
p = −∂q V (q), (1.2)

where

∂q V (q) =
(

∂V

∂q1
(q), . . . ,

∂V

∂qn
(q)

)
= (∂1 V (q), . . . , ∂n V (q)) .

We assume that potential V (q) is an algebraic function. That is, it 
satisfies the following equation

F (q, V (q)) :=
m∑

i=0

f i(q)V (q)i = 0, (1.3)

where f i(q) are complex polynomials, and m > 0. If m = 1, then 
V (q) is a rational function
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V (q) = − f0(q)

f1(q)
. (1.4)

If m > 1, then, for a generic value of q ∈ Cn , equation (1.3) defines 
m different values of V (q), so one has to fix a ‘branch’ of multi-
valued function V (q). For example, if m = 2, then there are two 
branches

V (q) = − f1(q) ±√ f1(q)2 − 4 f2(q) f0(q)

2 f2(q)
, (1.5)

and a choice of sign before the radical fixes the branch. If m > 4, 
then by fundamental theorem of algebra, generally it is impossible 
to express V (q) in terms of radicals.

The fundamental question concerning investigated systems is 
their integrability. It seems that the most powerful methods for 
a study of the integrability are based on investigation of varia-
tional equations along a particular solution. Here we have in mind 
Ziglin and Morales–Ramis theories, see [19,20] and [13]. As it was 
noticed by Combot [3], these theories cannot be applied directly 
for investigation of systems with algebraic potentials because they
were formulated for systems with complex meromorphic right-
hand sides.

A general framework for study systems with potentials which 
are meromorphic functions on certain algebraic varieties in Cn+s

was proposed by Combot [3]. Moreover, in this paper necessary 
conditions for integrability of algebraic homogeneous potentials of 
degree k ∈ Z× := Z \ {0} were derived. They coincide with the 
respective conditions obtained for meromorphic homogeneous po-
tentials obtained by Morales-Ruiz and Ramis [14].
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The aim of this paper is twofold. At first we show that sys-
tems with algebraic potentials can be considered as restrictions 
of certain Poisson systems with rational Hamiltonians and rational 
Poisson tensors. The rank of these Poisson structures is constant 
and equal to 2n.

Our second aim is to supplement consideration of Combot [3]
for a homogeneous potential of an arbitrary degree k ∈ Q× . In fact, 
knowing how to investigate algebraic potentials, the restriction of 
their degree of homogeneity to integer k is artificial, especially if 
we take into account that there are many examples of integrable 
and super-integrable systems with homogeneous potentials of non-
integer degrees.

2. Algebraic potential

Classical examples of systems with algebraic potentials are Ke-
pler problem

H = 1

2

(
p2

1 + p2
2 + p2

3

)
− μ

r
, r2 = q2

1 + q2
2 + q2

3, (2.1)

or the generalised two fixed centers problem given by the follow-
ing Hamiltonian

H = 1

2

(
p2

1 + p2
2 + p2

3

)
− μ1

rq
1

− μ2

rq
2

, q ∈Q, (2.2)

where

r2
i = (q1 − ai)

2 + q2
2 + q2

3, i = 1,2, (2.3)

see [12]. In both cases potential is expressed explicitly in terms 
of radicals, however in general case we have to consider V (q) as 
an implicit function defined by (1.3). Thus, the right-hand sides of 
equations (1.2) are given implicitly. By the implicit function theo-
rem, the partial derivatives of V (q) can be expressed in terms of 
partial derivatives of polynomial

F (q, u) :=
m∑

i=0

f i(q)ui ∈C[q, u]. (2.4)

Namely, we can assume that F is irreducible and consider a point 
(q0, u0) ∈ Cn × C such that F (q0, u0) = 0 and ∂u F (q0, u0) �= 0. 
Then, in a neighbourhood U ⊂ Cn of q0, a function U � q �→ V (q)

is well defined, and

∂V

∂qi
(q) = −

[
∂ F

∂u
(q, V (q))

]−1
∂ F

∂qi
(q, V (q)), (2.5)

for i = 1, . . . , n. Notice that the right-hand side of the above for-
mula is still implicit because we do not know how to evaluate 
V (q), except for q0 for which we know that V (q0) = u0. How-
ever, if q(t) evolves in time according to (1.2) and satisfies initial 
condition q(0) = q0, then u(t) := V (q(t)) fulfils initial condition 
u(0) = V (q0) = u0. Moreover, evaluating the time derivative of u(t)
we find that

d

dt
u(t) = d

dt
V (q(t)) =

n∑
i=1

∂V

∂qi
(q(t))q̇i(t)

= −
[

∂ F

∂u
(q(t), u(t))

]−1 n∑
i=1

pi(t)
∂ F

∂qi
(q(t), u(t)). (2.6)

The above remark shows that instead of system (1.2) with im-
plicit right hand sides it is better to consider the following system

d

dt
q = p,

d

dt
p = 1

∂u F (q, u)
∂q F (q, u),

d

dt
u = − p · ∂q F (q, u)

∂u F (q, u)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.7)

where we denoted

∂q F = (∂1 F , . . . , ∂n F ) , ∂i F = ∂ F

∂qi
, for i = 1, . . . ,n

and

∂u F (q, u) = ∂ F

∂u
(q, u) =

m∑
i=0

i f i(q)ui−1.

For a, b ∈Cn we use notation

a · b :=
n∑

i=1

aibi .

The above construction is summarised in the following propo-
sition.

Proposition 2.1. Let (q(t), p(t)) be a solution of system (1.2) with 
initial condition (q(0), p(0)) = (q0, p0). Then (q(t), p(t), u(t)) with 
u(t) := V (q(t)) is a solution of (2.7) satisfying initial condition (q(0),

p(0), u(0)) = (q0, p0, V (q0)).

Moreover, system (2.7) has several interesting properties. At 
first we notice that it has two global first integrals.

Proposition 2.2. System (2.7) has two polynomial first integrals

K = 1

2
p · p + u, and F = F (q, u). (2.8)

Proof of this proposition consists in a direct check and it is left 
to the reader.

Now our aim is to show that system (2.7) is Hamiltonian with 
respect to a certain non-canonical degenerated Poisson bracket de-
fined in C2n+1. To this end, let us denote z = (q, p, u) ∈ C2n+1. 
For two smooth functions G(z) and R(z) we define their bracket 
{G, R}(z) in the following way

{G, R} = ∂qG · ∂p R − ∂p G · ∂q R + ∂u R(C · ∂p G)

− ∂u G(C · ∂p R), (2.9)

where

C = C(z) := 1

∂u F
∂q F . (2.10)

Lemma 2.1. The bracket defined by (2.9) is antisymmetric and satisfies 
the Leibniz and the Jacobi identities.

Proof. The first two properties are satisfied in an obvious way. In 
order to prove that the bracket satisfies the Jacobi identity we no-
tice that {zi, z j} do not vanish only in the following cases

{qi, pi} = 1, {pi, u} = Ci for i = 1, . . . ,n. (2.11)

Since Ci = Ci(q, u), we also have

{qi, {p j, u}} = {u, {p j, u}} = 0 for i, j = 1, . . . ,n. (2.12)

In effect, the only non-vanishing triple brackets are the following 
ones
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