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We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium 
configurations in the two-dimensional setting where the drop is not required to fully wet the 
flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium 
configuration as a function of the volume of liquid that it contains, as well as plots representing the 
energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases 
to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the 
case of pinned contact points, three different parameter regimes are identified, one of which predicts 
instantaneous encapsulation for small initial volumes of liquid.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Capillary origami, namely the folding of a flexible two-dimen-
sional membrane into a predetermined three-dimensional shape 
through the action of surface capillary forces, is an example of 
micro-origami [1]. This technique (see [2] for a review), which also 
encompasses folding of planar structures by means of chemical [3], 
thermal [4], and electrostatic forces [5,6], presents an interesting 
alternative to the traditional methods of micro-fabrication based 
on the deposition and etching of thin films [7,8]. Capillary origami 
is observed in nature [9] and its applications include lab-on-a-chip 
devices [10], graphene actuation [11] and self-assembly [12–14].

The seminal article of Py et al. [15] provided an elegant proof 
of concept for capillary origami, showing that a variety of three-
dimensional structures, such as cubes or pyramids, could be cre-
ated by this method. A capillary origami system consists of a thin, 
flat two-dimensional plate, lying on a hydrophobic substrate, over 
which one places a small drop of liquid. Initially, the solid–liquid 
adhesive forces overcome the strength of elastic forces within the 
plate, deforming the system into an equilibrium position where the 
plate at least partially adheres to the drop of liquid. As the vol-
ume of liquid is reduced, for instance by evaporation [16–19], the 
thin sheet can completely encapsulate the liquid, thereby forming 
a three-dimensional structure whose shape is predetermined by 
the initial cut out of the two-dimensional thin film. Alternatively, 
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immediate folding may be achieved upon impact of a drop on a 
flexible membrane [20].

The purpose of this letter is to promote a unified and system-
atic approach to the problem of capillary origami and to apply this 
method to identify all two-dimensional equilibrium structures of a 
capillary origami system in the general situation where the liquid 
is not required to completely wet the flexible plate. The shape of 
the air–liquid interface, as well as the extent over which the liq-
uid is in contact with the plate, are obtained as consequences of 
minimizing the total energy E of the system, under appropriate 
constraints. This minimization is performed on the actual energy, 
as opposed to for instance a discretized version thereof [18]. As 
a consequence, we obtain the ordinary differential equations and 
boundary conditions that equilibria must satisfy. These are Equa-
tions (2), which we then solve numerically, using an Euler–Newton 
predictor–corrector method. The resulting equilibrium configura-
tions depend on the physical properties of the fluid and of the 
plate, as well as on a single control parameter, which is the vol-
ume of the liquid.

We present our results in the form of bifurcation diagrams 
showing the level of encapsulation of various branches of equilib-
ria as a function of the volume V of liquid in the system, together 
with corresponding plots for E . These plots explain how the bifur-
cation diagrams of [21], obtained for configurations in which the 
liquid wets the entire plate, are amended when partial wetting is 
taken into account. We conclude that, as in [21] for fixed contact 
points, three parameter regimes need to be considered in the gen-
eral case.
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Fig. 1. Two-dimensional capillary origami setup.

2. Problem setup

For simplicity, we neglect gravity and assume that the plate 
bends without stretching. These effects, as well as the presence of 
external forces generated for instance by an electric [22] or mag-
netic [23] field, may be included in the total energy of the system 
if needed. We suppose that all deformations are elastic, and we 
are only concerned with two-dimensional structures, that is three-
dimensional configurations that are uniform by translation in one 
spatial direction. We therefore consider the two-dimensional cap-
illary origami setup shown in Fig. 1, consisting of a thin plate �
and a drop of liquid � whose interface with the surrounding air is 
given by the curve �. The volume V of the drop of liquid (denoted 
as the area A of the region delimited by � and �), as well as the 
length L of the plate, are fixed and finite. We look for configura-
tions that are symmetric with respect to the vertical axis, but do 
not assume any particular shape for � or �. These properties will 
be obtained as consequences of the minimization process.

To streamline the discussion, we explain our approach in the 
situation where the endpoints of � and � are in contact but give 
the final result in (2) for general configurations; an example of the 
latter is depicted in Fig. 1. Details of the calculations are given 
in [21] for pinned contact points and summarized in the supple-
mentary materials for non-pinned contact points. A longer article 
describing the calculations in the latter case is in progress and will 
be published elsewhere [24].

When the fluid wets the entire plate, the total energy of the 
system is comprised of the free surface energy of the liquid–air in-
terface [25], and of the bending energy of the elastic plate [26]. 
This energy is given by γ L E[�, �], where γ ≡ γLV is the surface 
tension of the liquid–vapor interface � and E[�, �] is the dimen-
sionless energy

E[�,�] =
ˆ

�

dσ + 1

2λ

ˆ

�

κ�
2dσ . (1)

The elasto-capillary length of the system is given by Lec = L/
√

λ

where λ = γ L2/B and B is the bending rigidity of �. In (1), all 
lengths are relative to the length L of the plate, κ denotes the 
signed curvature of its subscript, and dσ represents the arc-length 
element of the curve referred to in each integral. As detailed in 
[21], equilibrium configurations are obtained by calculating the 
first variation of the above energy assuming conservation of the 
volume of liquid V and the length of the plate L. Using α and β
as Lagrange multipliers to account for these constraints, one must 
therefore minimize

J [�,�] =
ˆ

�

dσ + 1

2λ

ˆ

�

κ�
2dσ + α

ˆ

�

dσ + β

¨

�

dA.

To this end, we introduce perturbations �ε and �ε of the curves �
and � parametrized as follows:

�ε : �xε(s) = �x(s) + ε
(
u�(s) �n�(s) + v�(s) �x′(s)

)
,

�ε : �ξε(t) = �ξ(t) + ε(u�(t) �n�(t) + v�(t) �ξ ′(t)),

where �x(s) = (x(s), y(s)) is a smooth parametrization of � in 
terms of its arclength s ∈ [−
, 
] (here 
 is the half-length of the 
air–liquid interface scaled to the length L of the plate), �ξ(t) =
(ξ(t), η(t)) is a similar parametrization of the plate by its arclength 
t ∈ [−1/2, 1/2], a prime represents the derivative with respect to 
arclength, �n�(s) = Rπ/2 �x′(s) and �n�(t) = Rπ/2 �ξ ′(t) are the corre-
sponding unit normals pointing out of and into the liquid respec-
tively, and Rω is the standard two-dimensional counter-clockwise 
rotation matrix of angle ω (see Fig. 1). We do not assume that 
these perturbations are symmetric with respect to the vertical axis. 
The tangent and normal vectors for the perturbed air–liquid inter-
face are related by the Serret–Frénet formulas
( �x′

ε

||�x′
ε ||

)′
= κ�ε

�n�ε ||�x′
ε ||, �n′

�ε
= −κ�ε

�x′
ε;

similar relations also hold for the tangent and normal vectors for 
the perturbed plate. Requiring that the endpoints of �ε are the 
same as the endpoints of �ε leads to expressions for the tangential 
components of the perturbations,

v�(±
) = �ξ ′ · �x′

�n� · �ξ ′ u� + 1
�n� · �x′ u�

∣∣∣∣
P±

,

v�(±1/2) = 1

�n� · �ξ ′ u� + �x′ · �ξ ′
�n� · �x′ u�

∣∣∣∣
P±

,

where P± denotes the points (s, t) = ±(
, 1/2). The equilibrium 
configurations, which are extrema of J [�, �], are obtained by 
calculating the derivative of J [�ε, �ε ] with respect to ε at the 
value ε = 0 and demanding that this derivative vanish for all per-
turbations u� , u� . This leads to the following equations for the 
curvatures κ� and κ� of � and �:

κ� = β, −
 < s < 


κ�
′′ + κ�

3

2
− αλκ� = βλ, −ζ < t < ζ, (2a)

with boundary conditions

κ� = 0, κ�
′ = λ �n� · �x′, �ξ ′ · �x′ + α = 0 (2b)

at the contact points (s, t) = ±(
, ζ ). The parameter ζ is equal to 
1/2 for pinned contact points. As explained in the supplementary 
material and detailed in [24], the above equations extend to the 
case of free contact points, for which 0 < ζ < 1/2, with the addi-
tional constraints α ≥ −τ and (α + τ )(2ζ − 1) = 0, where τ is the 
known relative adhesion coefficient τ = (γSV − γLS)/γ .

System (2a) immediately implies that the air–liquid interface 
� is, as expected, an arc of a circle and, thus, reduces to a sin-
gle differential equation for κ� . We showed in [21] that in the 
case of pinned contact points this is equivalent to the model pro-
posed by Py et al. [15], which is also used in [27] in the idealized 
case of a plate of infinite length. To the best of our knowledge, 
the above equations are new for non-pinned contact points. Their 
significance is detailed in the bifurcation diagrams of the next sec-
tion.

3. Bifurcation diagrams

In this section, we present bifurcation diagrams that describe 
all basic equilibrium configurations of a two-dimensional capillary 
origami system. These diagrams, which complete and extend the 
diagrams of [15] and [21] to the case of non-pinned contact points, 
are obtained by numerically solving system (2), allowing the pa-
rameter ζ to be less than 1/2, with the appropriate constraints 
on α and β mentioned above. These diagrams show the distance 
across the opening of the plate ξ(1/2) − ξ(−1/2) ≡ 2 ξ(1/2) as a 
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