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We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background 
method. In analogy with Rayleigh–Bénard convection the upper bounds are for heat transport versus 
Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic 
counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting 
behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise 
amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations 
in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise 
amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, 
the degree of which depends on the degree to which the ensemble represents the ergodic set. This is 
confirmed by examining the close returns plots of the full solutions to the stochastic equations and the 
numerical convergence of the noise correlations. The numerical convergence of both the ensemble and 
time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization 
of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the 
effect of noise is equivalent to the effect of chaos.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Noise is an integral part of any physical system. It can be as-
cribed to fluctuations arising from intermittent forcing, observa-
tional uncertainties, interference from external sources or unre-
solved physics. In circumstances where noise acts to destroy a sig-
nal of interest, it is viewed as a nuisance. However, it can also 
be the case that fluctuations act to stabilize a system, examples of 
which include noise-induced optical multi-stability [2], asymmetric 
double well potentials [3], plant ecosystems [4], population dy-
namics [5], and in electron–electron interactions in quantum sys-
tems [6]. Curiously, it has recently been shown that noise can have 
positive effects on cognitive functions such as learning and mem-
ory [7]. Finally, a key issue arising when examining observational 
data is whether fluctuations are intrinsic or due to external forcing, 
which can be confounded by temporal multifractality (e.g. [8]).
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Given the breadth of settings in which the effects of noise 
manifest themselves on dynamical systems, it appears prudent to 
examine such matters in a well studied and yet broadly relevant 
system. Thus, we study the influence of noise in the Lorenz sys-
tem [9], which is an archetype of deterministic nonlinear dynam-
ics. Moreover, Souza and Doering [1] have recently determined the 
maximal (upper bounds) transport in the Lorenz equations, thereby 
providing us with a rigorous test bed for stochastic extensions. In 
Section 2 we describe the stochastic Lorenz model, followed by 
the derivation of the stochastic upper bounds in Section 3. We in-
terpret the core results and their implications in Section 4 before 
concluding.

2. Stochastic Lorenz model

The Lorenz model is a Galerkin-modal truncation of the equa-
tions for Rayleigh–Bénard convection with stress-free boundary 
conditions on the upper and lower boundaries. It acts as a rich 
toy model of low-dimensional chaos and since its origin extensive 
studies have been made spanning a wide range of areas (e.g. [10]). 
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Of particular relevance here, is using the system as a model for 
heat transport in high Rayleigh number turbulent convection [1].

The stochastic form of the Lorenz system is described by the 
following coupled nonlinear ordinary differential equations,

d

dt
X = σ(Y − X) + A1ξ1,

d

dt
Y = X(ρ − Z) − Y + A2ξ2,

d

dt
Z = XY − β Z + A3ξ3 (1)

where X describes the intensity of convective motion, Y is the
temperature difference between ascending and descending flow 
and Z is the deviation from linearity of the vertical temperature 
profile. The control parameters are σ the Prandtl Number, ρ the 
Rayleigh Number and β a domain geometric factor. The Ai are the 
noise amplitudes and ξi are the noise processes. Clearly, the deter-
ministic system has Ai = 0.

This type of additive noise may appear, for example, in observa-
tional errors, when the errors do not depend on the system state 
or as a model of sub-grid scale processes approximated by noise 
associated with unexplained physics [11]. In multiplicative noise 
the system has an explicitly state dependent noise process.

Although real noise will always have a finite time correlation, 
taking the limit that the noise correlation goes to zero as �t → 0, 
serves as a good approximation for the noise forcing. This is the 
white noise limit of colored noise forcing. White noise forcing ξ(t)
is defined by an autocorrelation function written as

〈ξ(t)ξ(s)〉 = 2Dδ(t − s), (2)

where, t − s is the time lag, D is the amplitude of the noise, 〈•〉
represents the time average and δ(r) is the Dirac delta-function.

3. Stochastic maximal transport

Initiated by the work of Louis Howard [12], maximizing the 
transport of a quantity such as heat or mass is a core organizing 
principle in modern studies of dissipative systems. In this spirit 
Souza and Doering [1] studied the transport in the deterministic 
Lorenz equations and determined the upper bound, which depends 
on the exact steady solutions Xs , Ys , as limT →∞ 〈XY 〉T = XsYs =
β(ρ − 1), where Xs = Ys = ±√

β(ρ − 1) for ρ ≥ 1. Moreover, they 
showed that any time-dependent forcing would decrease the trans-
port in the system, and hence the steady state maximizes the 
transport in the system. We study the effect of noise on the max-
imal transport in this system as the Rayleigh number ρ is varied, 
with σ = 10 and β = 8/3 fixed.

Let X = x, Y = ρ y, Z = ρz and A1 = A2 = A3 = A in the system 
of equations (1), which transform to

d

dt
x = σ(ρ y − x) + Aξ1,

d

dt
y = x(1 − z) − y + A

ρ
ξ2,

d

dt
z = xy − βz + A

ρ
ξ3. (3)

In the next two sub-sections, we calculate the stochastic upper 
bound of equations (3) using both Itô and Stratonovich calculi.

3.1. Itô calculus framework

Now, knowing that the state variables (x, y, z) in the Lorenz 
system are bounded [1,13], and following the approach of Souza 

and Doering [1] for this stochastic system, the long time averages 
of 1

2 x2, 1
2 (y2 + z2) and −z can be written as

0 = −〈x2〉T + ρ〈xy〉T + A2

2σ
+ A

σ
〈xξ1〉T + O (T−1), (4)

0 = −〈y2〉T + 〈xy〉T − β〈z2〉T + A2

ρ2
+ A

ρ
〈yξ2〉T

+ A

ρ
〈zξ3〉T + O (T−1), (5)

0 = −〈xy〉T + β〈z〉T + O (T−1), (6)

where the terms A2

2σ in Eq. (4) and A2

ρ2 in Eq. (5) are a consequence 
of Itô’s lemma.

Now, let z = z0 + λ(t), where z0 = r−1
r is time-independent [1], 

and equations (5) and (6) now become,

0 = −〈y2〉T + 〈xy〉T − βz2
0 − 2βz0〈λ〉t − β〈λ2〉T

+ A2

ρ2
+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1), and (7)

0 = −〈xy〉T + βz0 + β〈λ〉T + O (T−1). (8)

Therefore, equation (7) + 2z0 × (8) becomes,

0 = −〈y2〉T + (1 − 2z0)〈xy〉T + βz2
0 − β〈λ2〉T

+ A2

ρ2
+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1). (9)

Now adding 1
ρ × (4) to ρ × (9) gives

0 = −ρ〈y2〉T + ρ(1 − 2z0)〈xy〉T + ρβz2
0 − ρβ〈λ2〉T

− 1

ρ
〈x2〉T + 〈xy〉T + A

ρσ
〈xξ1〉T + A2

ρ

+ A2

2ρσ
+ A〈yξ2〉T + A〈λξ3〉T + O (T−1), (10)

and adding (ρ − 1)〈xy〉T to both sides gives,

(ρ − 1) 〈xy〉T = ρβz2
o + A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]

−
〈(

x√
ρ

− √
ρ y

)2

+ ρβλ2

〉
T

+ A2
[

1

ρ
+ 1

2ρσ

]
+ O (T −1). (11)

We thus arrive at

(ρ − 1) 〈xy〉T ≤ ρβz2
o + A2

[
1

ρ
+ 1

2ρσ

]

+ A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]

+ O (T −1). (12)

Comparing equation (12) above with equation 19 from Souza and 
Doering [1], we see two additional terms;

lim
T →∞〈XY 〉T = lim

T →∞ρ 〈xy〉T

≤ β(ρ − 1) + A2

ρ − 1

[
1 + 1

2σ

]
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