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We discuss the dynamics of an agent-based multilane traffic model using three defined rules. The 
dynamical characteristics of the model are described by a Boltzmann traffic entropy quantity adopting 
the concept of Boltzmann entropy in statistical physics. The results are analyzed using fundamental 
diagrams based on lane density, entropy and its derivative with respect to density. We show that there 
are three classifications of allowed initial to equilibrium state transition process out of four possibilities 
and demonstrate that density and entropy fluctuations occur during the transition from the initial to 
equilibrium states, exhibiting the well-known expected self-organization process. The related concept of 
entropy can therefore be considered as a new alternative quantity to describe the complexity of traffic 
dynamics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A major cause for traffic problems worldwide is the increasing 
number of vehicles. This has led to decades of investigations in or-
der to understand the complex dynamical characteristics of traffic 
flow. There are currently three categories of traffic models. These 
are the macroscopic models, microscopic models, and mesoscopic 
models.

The first attempt to model traffic flow macroscopically was 
conducted by Greenshields who introduced his first fundamen-
tal diagram in 1934 describing the relation between lane density 
and speed [1]. Afterwards, Lighthill, Whitham and Richards [2,3]
have conducted analytical works now known as the LWR model, 
whereas other analytical-based traffic models have also been re-
ported in Refs. [4–7]. The main physical formula in macroscopic-
based models is expressed using a mass conservation law, whereas 
the vehicles are assumed to occupy the lane continuously. The ve-
hicle dynamics can then be generally described using hyperbolic 
nonlinear partial differential equations as a function of its density 
and speed. Remarkably, an emerging phenomenon was reported in 
the corresponding macroscopic traffic flow, e.g. the emergence of a 
shock wave in the LWR model [3].
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In the microscopic models, space is described in discrete form, 
and the vehicles are assumed to follow certain interaction rules. 
The first microscopic model is the car-following model [8–10], 
where time is considered to be continuous such that the dy-
namics of each vehicle is described by a differential equation of 
its position and speed. The model usually accommodates only a 
single lane due to the difficulty in handling vehicle maneuvers 
to other lanes. Recently, this model was further intensively im-
proved by Tang et al. in Refs. [11–15]. The second type is the 
agent-based model also known as the cellular automata model. 
Some examples of this model are the Nagel–Schreckenberg [16], 
Biham–Middleton–Levine [17,18] and other models mentioned in 
Refs. [19,20]. Unlike the car-following model, here both space and 
time are considered discrete. In addition, adding another lane is 
now much easier to handle. Generally, the definition of a sin-
gle vehicle behavior and its interaction with other vehicles is the 
most crucial development step in the agent-based model. Based 
on this, the model can be classified into either deterministic or 
stochastic. Mesoscopic model [21,22] combines the two previous 
models. Here, the aggregate behavior of all vehicles is represented 
by a specific probability distribution function while still consid-
ering the individual behavior of each vehicle which is following 
specific rules.

Nevertheless, it should be noted that all explained models failed 
to describe the congested problem that arise in the real traffic [23]. 
Recently, Kerner et al. [24–29] have proposed a three-phase traffic 
flow theory based on fundamental empirical features of real traffic 
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Fig. 1. Illustration of traffic-entropy-transition process. The box with thick border moves with speed vbox .

Fig. 2. Illustration of the defined rules in Neumann neighborhood.

in order to give a physical explanation on the traffic breakdown 
due to transition from free to congested traffic flow by introducing 
the concept of free flow, synchronized flow and wide moving jam 
phases. In principle, this empirical concept can be applied both in 
the macroscopic [24,25] and microscopic models [26–29]. In the 
mean time, the effects of the other important factors such as road 
condition, traffic information as well as driver’s attribution to the 
dynamics of real traffic have also been discussed in Refs. [11–15,
30–33].

A relatively comprehensive historical review of all these three 
different traffic models can be seen in Ref. [34]. However, it is in-
teresting to point out that the multilane traffic flow is one of the 
important topics for model based investigation, e.g. Ref. [7]. In our 
understanding, little effort has been performed to describe the cor-
responding internal dynamics. Based on this fact, instead of using 
the existing traffic model, we have developed in this work a simple 
agent-based multilane traffic model with three defined rules and 
consider a Boltzmann traffic entropy quantity to study its internal 
dynamics, namely the characteristics of vehicles spatial distribu-
tion and its behavior as a function of lane density. To the best of 
our knowledge, the discussion regarding the application of the cor-
responding Boltzmann-entropy-like concept in a microscopic traffic 
model has never been reported elsewhere.

Here we emphasized for the sake of clarity that the defined 
Boltzmann traffic entropy applied in this work has a different 
physical interpretation compared to the Boltzmann entropy con-
cept in statistical physics. Nevertheless, we will show that it can 
be useful to describe the internal dynamics of spatial vehicles dis-
tribution of an agent based multilane traffic model.

We organize our results in this work as follows: the model is 
explained in Section 2, followed by the definition of the traffic en-
tropy. The associated fundamental diagrams and types of possible 
internal dynamical process are given in Section 3. In Section 4, we 
present the results of our simulation and discuss the correspond-
ing dynamics. Finally, we present our summary in Section 5.

2. Agent-based traffic model and Boltzmann traffic entropy

The computational window is defined in the form of M × N grid 
cells which can either be occupied or unoccupied by a vehicle. The 
total number of vehicles is given by n and the number of available 
cells that can be filled along the horizontal direction is denoted 
by M , while N represents the number of lanes. The initial system 
is defined by a box with L × N cells as shown in Fig. 1, where 
L denotes the number of cells along the horizontal direction and 
is occupied by nbox number of vehicles, while the rest is denoted 

by no = n − nbox and are outside the system. The position of each 
vehicle is denoted by r(i, j). The dummy indices i and j indicate
the corresponding position where r(0, 0) is located at the top-left 
corner of the computational window.

We consider the second order Neumann neighborhood as de-
picted in Fig. 2, and define the following three rules:

Rule 1: Check the two cells located in front of the vehicle (oc-
cupied cell). If the cells are unoccupied then the vehicle
moves two cells forward otherwise go to Rule 2.

Rule 2: Check one cell in front of the occupied cell. If it is unoc-
cupied, then the vehicle moves one cell forward, other-
wise proceed to the Rule 3.

Rule 3: Check the two cells that are positioned as follows: one 
cell is directly located to the right or left of the occu-
pied cell, and one directly in front of the former (in this 
case the right or left forward diagonal cell of the oc-
cupied cell) as shown in Fig. 2b. If the related cells of 
either the right or left lane are unoccupied, then the ve-
hicle moves diagonally to the unoccupied lane. If both 
cells on the right and left lanes are unoccupied at the 
same time, then the vehicle decides randomly whether 
to move diagonally to the right or left lane. If neither op-
tion is possible the vehicle does not move. A vehicle at 
the leftmost lane can only change to the right lane and 
vice versa.

In our algorithm, we perform an iteration process and denote 
its number as time-step t . For every iteration step the above rules 
are applied consecutively to every vehicle in the related state such 
that it changes its position accordingly and so on. It is important 
to note that the developed algorithm is designed so that the rules 
apply simultaneously for all vehicles, and that Rule 1 obviously 
results in an equilibrium state where the distance between two 
adjacent vehicles in the horizontal direction is two cells. Here, we 
define the equilibrium state as a state where the above mentioned 
rules can no longer change it.

It has to be emphasized from the beginning that although the 
velocity of each vehicle at equilibrium is uniform but different ini-
tial states can lead to different equilibrium states. Starting from the 
initial state, the state changing process will continue until a new 
equilibrium state is reached. In this work, we consider M being 
large enough such that no boundary condition in the flow direction 
is needed in our calculation. We are fully aware though, that com-
pared to the real traffic, our model is subject to certain limitations. 
For instance, our model does not take into account the hetero-
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