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Pattern formation in annular systems of repulsive particles
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General particle models with symmetric and asymmetric repulsion are studied and investigated for 
finite-range and exponential interaction in an annulus. In the symmetric case transitions from one- to 
multi-lane behavior including multistability are observed for varying particle density and for a varying 
curvature with fixed density. Hence, the system cannot be approximated by a periodic channel. In the 
asymmetric case, which is important in pedestrian dynamics, we reveal an inhomogeneous new phase, 
a traveling wave reminiscent of peristaltic motion.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many physical systems can be described by particle models. 
The interaction between these particles is often modeled by forces, 
which typically depend on the inter-particle distance, e.g., gravi-
tational attraction in celestial mechanics [1], Coulomb forces be-
tween charged particles [2] or swarming models of self-propelled 
particles [3]. In most physical systems Newton’s third law of actio–
reactio is valid. However, when considering a larger class of inter-
acting particle models, it might be crucial to introduce an asym-
metry into the interaction terms, such that the forces not only 
depend on the distance, but also on direction. Examples are found 
in pedestrian models, where pedestrians typically pay more atten-
tion to people in front than behind [4,5], or in traffic dynamics, 
where drivers on highways are assumed to adjust their speed ac-
cording to the distance to the following car [6–8]. In order to 
isolate fundamental effects, experiments are often conducted in 
simple geometries such as an annulus or a torus. These include 
the tokamak [9], the large hadron collider [10], camphor boats in 
a circular duct [11], pedestrian experiments in annular geometry 
[12] or traffic studies on a ring road [13].

Motivated by traffic and pedestrian models, it seems valuable to 
study particle systems with asymmetric interaction in an annular 
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geometry where Newton’s third law is invalid. An interesting as-
pect of these systems is pattern formation. Recently, the stability of 
zigzag patterns in a channel with repulsive particles has been stud-
ied in [14] for different interaction potentials. Depending on pa-
rameter values, three fundamentally different solutions have been 
found: one-lane flow, homogeneous two-lane flow and inhomo-
geneous two-lane flow (denoted distorted zigzag in [14]). Further-
more, the transition to collective motion like flocking and multi-
vortex dynamics depending on density and boundary conditions 
has been analyzed for self-propelled particle models in [15,16]. Ex-
perimental verification for desert locusts, forming marching bands, 
has been given in [17].

Here we study a model of interacting point particles with finite-
range [18] and exponential interaction [19] in an annular geome-
try. In particular, we focus on the resulting patterns that emerge 
from the dynamics of the model. For certain parameter values, co-
existence of patterns depending on the initial state is observed. 
Further, we introduce asymmetry into the model and investigate 
the influence on the possible patterns.

2. Particle model with asymmetric interaction

In order to study the dynamics of particles confined in an an-
nulus, we shortly review the models of [18,19] where pedestrians 
are modeled as interacting particles without extension and gen-
eralize them to include asymmetry. The equations of motion are 
described by forces that act on the particles (so-called social forces
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in the context of pedestrian dynamics). The position r i ∈R
2 of par-

ticle i ∈ {1, . . . , N} evolves according to

r̈i = F i +
∑

w∈W

F W
iw +

∑
j �=i

F P
i j, (1)

where F i is its target or external force and F W
iw and F P

i j describe 
the interaction with walls and other particles, respectively. In many 
pedestrian and traffic models the target force is given as

F i = τ−1 (v0ei − v i) (2)

with reaction time τ , desired speed v0 and velocity of pedes-
trian v i = ṙi . The desired direction vector ei is a normalized vector 
pointing in the direction of the target. For general particle models, 
this contribution might be replaced by an external driving force 
instead of an internal desire to reach a target.

The interaction with walls (ν = W ) and other particles (ν = P ) 
is determined by

F ν
iη = f ν(‖riη‖) riη

‖riη‖ , (3)

where η indexes either walls (η = w) or other particles (η = j �= i). 
The distance vector riw points from the wall w to particle i in the 
normal direction and ri j = ri − r j is the vector from particle j to i. 
We investigate two types of interaction forces f ν (cf. Fig. 1(b)): a 
finite-range interaction [20]

f̂ Â,B̂(x) = − Â
[
tan

(
αB̂(x)

) − αB̂(x)
]

H(B̂ − x) (4)

with Heaviside step function H , αB̂(x) = π
2

(
x
B̂

− 1
)

and an expo-

nential interaction

f̃ Ã,B̃(x) = Ã exp(−B̃x). (5)

For a smooth switching between (4) and (5), we use

f ν(x) = λ f̂ Âν ,B̂ν (x) + (1 − λ) f̃ Ãν ,B̃ν (x), (6)

where λ ∈ [0, 1] is a homotopy parameter. The constants Aν and 
Bν in hat ˆ and tilde ˜ notation describe the interaction with walls 
and particles in the finite-range and the exponential model, re-
spectively.

Inspired by an asymmetric attention of pedestrians to their 
close surroundings we propose a modification of (3). Pedestrians 
are assumed to adjust to the average velocity of their neighbor-
hood given by

V i =
N∑

j=1

v j H(δ − ‖ri j‖), (7)

with local radius of interaction δ. After normalization we obtain 
the average walking direction of the neighbors as

ni = V i

‖V i‖ . (8)

In order to incorporate this information into the model, we modify 
(3) for the particle interaction such that

F P
i j =

[
1 + ε

ri j

‖ri j‖ · ni

]
f P (‖ri j‖) ri j

‖ri j‖ , (9)

where ε is an asymmetry parameter that describes the deviation 
from the original problem. Note that for ε �= 0, Newton’s third law 
is violated and the interaction force depends on the relation be-
tween the difference vector ri j and the velocity direction of the 
neighborhood ni . In general particle models the importance of the 
neighborhood could appear in setups with shielding effects, see 
[21], e.g.

Fig. 1. (a) Sketch of the annular geometry with inner and outer radius R1 and R2, 
respectively. The vectors ri , r j and ri j describe the positions and the connecting 
vector of particles i and j. The δ-neighborhood of particle i is denoted by the cir-
cular region, wherein particles contribute to the average walking direction ni with 
their respective velocities v j . (b) Logarithmic plot of particle interaction forces (4)

and (5) as used in the simulations. Eq. (4) has a finite range B̂ and diverges at 0, 
while (5) has infinite range and is finite at 0.

3. Results

We study the behavior of the model (1)–(9) in an annular ge-
ometry. The following set of (dimensionless) parameter values is 
used as an example throughout the paper: τ = 0.22, v0 = 2.5, 
Â P = 5, B̂W = 3, B̂ P = 4, ÃW = 115, Ã P = 38, B̃W = 2.3, B̃ P = 1.8, 
δ = 2. We specify varying parameters N, ε, λ, R1, R2 and ÂW for 
each investigation separately. Simulations are performed using a 
Runge–Kutta scheme implemented in Matlab’s [22] ode45 inte-
grator.

3.1. Geometry

Motivated by the examples in the Introduction, we define the 
geometry of our problem as an annulus with inner radius R1 and 
outer radius R2. The direction vector ei for particle i is chosen such 
that it moves clockwise around the annulus. A sketch of a sector of 
the geometry with particles drawn as small open circles is shown 
in Fig. 1(a). The shaded region defines the δ-neighborhood of par-
ticle i and ν i is the average walking direction of the neighborhood.

3.2. Symmetric interaction ε = 0

We first study the symmetric case with ε = 0 for the finite-
range particle model λ = 1 and fix the number of particles N =
160. In [23,24] the density was shown to be of importance for 
the resulting stationary states. We vary the particle density in a 
smooth way by keeping the particle number fixed and using dif-
ferent values of the outer ring radius R2 ∈ [4, 35] while the width 
of the corridor is kept fixed, i.e., R1 = R2 − 3.5. The lane formation 
behavior can be understood by investigating the radial distance be-
tween particle lanes

b = max
i

‖ri‖ − min
i

‖ri‖. (10)

For a simple one-lane state, b is zero, while for multi-lane states, 
b assumes positive values.

The results of a simulation sweep varying R2 are shown in 
Fig. 2(a). After a parameter change the system is integrated for 
300 time steps in order to converge to a stationary state. For large 
values of R2, corresponding to small particle density, a one-lane 
state is obtained. By subsequently decreasing R2 in a downsweep, 
cascading transitions to multi-lane states are observed. The tran-
sitions resemble the typical square-root behavior of a pitch-fork 
bifurcation. A following upsweep for increasing R2 reveals small 
deviations in b compared to the downsweep data. This suggests, 
that the system exhibits multistability and that the stationary state 
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