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We discuss a complicated bifurcation structure involving several quasiperiodic bifurcations generated
in a three-coupled delayed logistic map where a doubly twisted Neimark-Sacker bifurcation causes
a transition from two coexisting periodic attractors to two coexisting invariant closed circles (ICCs)
corresponding to two two-dimensional tori in a vector field. Such bifurcation structures are observed
in Arnol'd tongues. Lyapunov and bifurcation analyses suggest that the two coexisting ICCs and the two

coexisting periodic solutions almost overlap in the two-parameter bifurcation diagram.
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1. Introduction

Quasiperiodic bifurcations have recently attracted consider-
able attention [1-13,15,14,16-32]. They mainly include quasiperi-
odic Neimark-Sacker (QNS) bifurcations and quasiperiodic saddle-
node (QSN) bifurcations in maps and flows [31]. Three- or higher
dimensional quasiperiodic oscillations generate extremely complex
bifurcation structures denoted as Arnol’d resonance webs by Broer
et al. [1] where web-like partial entrainment regions extend in
numerous directions [1]. Arnol'd resonance webs in discrete dy-
namics [1,6,9,15,14,23,32] and ordinary differential equations [5,8,
22] have been extensively studied. The pioneering work of partial
synchronizations by Linsay and Cumming was based on detailed
circuit experiments [2]. They introduced the term “fractal devil’s
cobweb.” Moreover, Baesens et al. studied a family of torus maps
that captures the essence of the partial synchronization and intro-
duced the term “mode-locking web” [3].

The main focus in studying Arnol’d resonance webs is to find
how a conventional Arnol’d tongue transits to a high-dimensional
Arnol’d resonance tongue near a QNS bifurcation curve. Note that
the QNS bifurcations are also denoted as quasiperiodic Hopf (QH)
bifurcations [10]. Takens and Wagener analyzed such bifurcation
transitions using bifurcation analysis [27]. Moreover, Kuznetsov
and Meijer investigated the codimension-two bifurcation points
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denoted as flip-Neimark-Sacker (flip-NS) and double NS bifur-
cations, and conducted Lyapunov analysis in simple maps [28].
The simplest transition may be that of a conventional Arnol'd
tongue bifurcating to a two-dimensional torus Arnol’d tongue via
a Neimark-Sacker (NS) bifurcation [23]. A more complex transition
was reported by Broer et al. [9].

Our previous studies showed that the two- and three-coupled
delayed logistic maps generate typical bifurcations such as QNS bi-
furcations and QSN bifurcations. Anishchenko et al. showed that
the QSN bifurcation from a stable two-dimensional torus to a
three-dimensional torus occurs because of the saddle-node bi-
furcation of the stable two-dimensional torus and saddle two-
dimensional torus [12,13]. In our previous studies [14,15], we
showed that the stable invariant two-torus exists due to the
saddle-node (SN) bifurcation of a stable invariant one-torus and
saddle invariant one-torus in the two-coupled delayed logistic
map [14], and the stable invariant three-torus exists due to the
SN bifurcation of a stable invariant two-torus and saddle invariant
two-torus in the three-coupled delayed logistic map [15]. These
results strongly suggest that a stable (n + 1)-dimensional torus is
generated owing to the SN bifurcation of a stable n-dimensional
torus and saddle n-dimensional torus in a vector field. Such bi-
furcation structures are noteworthy. The coupled delayed-logistic
maps capture the essence of the underlying mechanism of the
quasiperiodic bifurcations.

In this study, we present a complex bifurcation transition from
a conventional Arnol'd tongue to an invariant one-torus Arnol'd
tongue [14] generated in a three-coupled delayed logistic map,
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Table 1
Solutions and phenomena, where %; is the i-th Lyapunov exponent.

Table 2
Classification of bifurcations.

Bifurcations Abbreviations

Map Lyapunov spectra Vector fields
Periodic solution (ITp) 2 <0 Limit cycle
Invariant one-torus (ITq) A =0,1<0 Two-dimensional

(or ICC) torus
Invariant two-torus (IT3) M =X22=0,23<0 Three-dimensional
torus
Four-dimensional
torus

Invariant three-torus (IT3) M=A=23=0,24<0

where an invariant one-torus corresponds to a two-dimensional
torus in a vector field. The invariant one-torus is often called an
invariant closed curve (ICC) in discrete time dynamics [23]. We
discovered that two periodic points with a period of 93 coexist
in the Arnol'd tongue; moreover, the two periodic solutions bifur-
cate to two coexisting invariant one-tori in the Arnol’d tongue that
comprises 93 ICCs via two successive NS bifurcations. The bifurca-
tion structure is very complicated because two invariant one-tori
coexist although they are in close proximity in the state space.
We conduct a bifurcation analysis of this bifurcation structure and
show that a doubly twisted NS bifurcation curve causes such a
transition near a QNS bifurcation, and also generates double flip-
NS bifurcation. The detailed explanation for the derivation of the
two coexisting periodic solutions is given in the Appendix. We as-
sert that the two coexisting attractors are linked through saddle
solutions.

2. Results

We conduct a Lyapunov analysis of the three-coupled delayed
logistic map represented by the following equation.

F(Xn, Yn, Zn, Wn, Un, Vi) : Xnt1 = Yn,
Yn+1=B1yn(1 —Xy) + €1Wp + &2V,

Zn41 = Wn,
Wni1 = Bown(1 — 2p) + €3Vn + €4Yn,
Up41 = Vp,
Vpy1 = B3vp(1 — up) + &syn + E6Wh,

(1)

where €1, &2, €3, €4, &5, and &g are coupling parameters. Because
the single delayed logistic map generates an invariant one-torus
via an NS bifurcation, the three-coupled delayed logistic map can
generate an invariant three-torus with three zero Lyapunov expo-
nents. Throughout the discussion, we use

£1=0.01, &, =0.002, €3 =0.001, ¢4 =0.02,
€5 = 0.01, €6 = 0.01, B3 = 2.05, (2)

and allow parameters B; and B; to vary. The six Lyapunov expo-
nents (A1, A2, ..., Ag) in Eq. (1) are calculated using the procedure
presented by Shimada and Nagashima [33]. To distinguish the QNS
bifurcation from an invariant one-torus to an invariant two-torus
and the QNS bifurcation from an invariant two-torus to an invari-
ant three-torus, we denote the latter as QNS, bifurcation. Similarly,
we denote the QSN bifurcation from an invariant two-torus to an
invariant three-torus as QSN; bifurcation.

In this study, we regard a Lyapunov exponent as exact zero if
the following condition is satisfied.

Ai < 10/N, (3)

where N is the number of iterations. According to our numerical
calculation, the fourth Lyapunov exponent A4 is always negative.
The terms and their abbreviations are listed in Tables 1 and 2.
Fig. 1 shows a two-parameter Lyapunov diagram near the QNS; bi-

Neimark-Sacker bifurcation NS
Saddle-node bifurcation SN
Quasiperiodic Neimark-Sacker bifurcation from IT; to IT, QNS
(or Quasiperiodic Hopf bifurcation from IT; to IT) (or QH)
Quasiperiodic saddle-node bifurcation from IT; to IT, QSN
Quasiperiodic Neimark-Sacker bifurcation from IT; to IT3 QNS;
(or Quasiperiodic Hopf bifurcation from IT, to IT3) (or QH3)
Quasiperiodic saddle-node bifurcation from IT; to ITs QSN,
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Fig. 1. Two-parameter Lyapunov diagram near the QNS; bifurcation curve (M =
10,000,000 and N = 10,000,000 with a grid mesh of 1000 x 1000). (For interpre-
tation of the references to color in this figure, the reader is referred to the web
version of this article.)

furcation curve. In Fig. 1, the regions generating periodic solutions,
invariant one-tori, invariant two-tori, and invariant three-tori are
shown in orange, blue, black, and dark green, respectively. Chaos
is not observed in the parameter range of this diagram. As seen in
Fig. 1, an invariant one-torus Arnol’d tongue bifurcates to an invari-
ant two-torus Arnol'd tongue via a QNS bifurcation. Furthermore,
a conventional Arnol'd tongue is clearly observed inside them and
transits to an invariant one-torus Arnol’d tongue through an NS
bifurcation.

We focus on the bifurcation structures of the transition from
the conventional Arnol’d tongue to the invariant one-torus Arnol’d
tongue. At first glance, this transition appears to be a simple NS bi-
furcation similar to that presented in Ref. [23]. However, the bifur-
cation analysis clarifies that the two solutions coexist in the con-
ventional Arnol'd tongue and invariant one-torus Arnol'd tongue.
To the best of our knowledge, such complex structure has not been
reported to date.

Fig. 2 shows a magnified view of Fig. 1. The NS bifurcation
curve and four (SN) bifurcation curves are explained below. The
two coexisting periodic attractors with a period of 93 obtained
at P in Fig. 2 are shown in Figs. 3(a.l) and 3(a.2), respectively.
Figs. 3(a.1) and 3(a.2) are magnified and shown in Figs. 3(b.1) and
3(b.2), respectively. It is recognized from Fig. 3 that these are dif-
ferent attractors. The procedure for obtaining these two periodic
solutions is explained in Appendix A. In addition, by tracing the
above-mentioned parameter values above from P in the diagram,
the two coexisting periodic solutions bifurcate to two coexisting
invariant one-tori. The two coexisting invariant one-tori are shown
in Figs. 4(a.1) and 4(a.2) and magnified in Figs. 4(b.1) and 4(b.2),
respectively.
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