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We discuss a complicated bifurcation structure involving several quasiperiodic bifurcations generated 
in a three-coupled delayed logistic map where a doubly twisted Neimark–Sacker bifurcation causes 
a transition from two coexisting periodic attractors to two coexisting invariant closed circles (ICCs) 
corresponding to two two-dimensional tori in a vector field. Such bifurcation structures are observed 
in Arnol’d tongues. Lyapunov and bifurcation analyses suggest that the two coexisting ICCs and the two 
coexisting periodic solutions almost overlap in the two-parameter bifurcation diagram.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quasiperiodic bifurcations have recently attracted consider-
able attention [1–13,15,14,16–32]. They mainly include quasiperi-
odic Neimark–Sacker (QNS) bifurcations and quasiperiodic saddle-
node (QSN) bifurcations in maps and flows [31]. Three- or higher 
dimensional quasiperiodic oscillations generate extremely complex 
bifurcation structures denoted as Arnol’d resonance webs by Broer 
et al. [1] where web-like partial entrainment regions extend in 
numerous directions [1]. Arnol’d resonance webs in discrete dy-
namics [1,6,9,15,14,23,32] and ordinary differential equations [5,8,
22] have been extensively studied. The pioneering work of partial 
synchronizations by Linsay and Cumming was based on detailed 
circuit experiments [2]. They introduced the term “fractal devil’s 
cobweb.” Moreover, Baesens et al. studied a family of torus maps 
that captures the essence of the partial synchronization and intro-
duced the term “mode-locking web” [3].

The main focus in studying Arnol’d resonance webs is to find
how a conventional Arnol’d tongue transits to a high-dimensional 
Arnol’d resonance tongue near a QNS bifurcation curve. Note that 
the QNS bifurcations are also denoted as quasiperiodic Hopf (QH) 
bifurcations [10]. Takens and Wagener analyzed such bifurcation 
transitions using bifurcation analysis [27]. Moreover, Kuznetsov 
and Meijer investigated the codimension-two bifurcation points 
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denoted as flip-Neimark–Sacker (flip-NS) and double NS bifur-
cations, and conducted Lyapunov analysis in simple maps [28]. 
The simplest transition may be that of a conventional Arnol’d 
tongue bifurcating to a two-dimensional torus Arnol’d tongue via 
a Neimark–Sacker (NS) bifurcation [23]. A more complex transition 
was reported by Broer et al. [9].

Our previous studies showed that the two- and three-coupled 
delayed logistic maps generate typical bifurcations such as QNS bi-
furcations and QSN bifurcations. Anishchenko et al. showed that 
the QSN bifurcation from a stable two-dimensional torus to a 
three-dimensional torus occurs because of the saddle-node bi-
furcation of the stable two-dimensional torus and saddle two-
dimensional torus [12,13]. In our previous studies [14,15], we 
showed that the stable invariant two-torus exists due to the 
saddle-node (SN) bifurcation of a stable invariant one-torus and 
saddle invariant one-torus in the two-coupled delayed logistic 
map [14], and the stable invariant three-torus exists due to the 
SN bifurcation of a stable invariant two-torus and saddle invariant 
two-torus in the three-coupled delayed logistic map [15]. These 
results strongly suggest that a stable (n + 1)-dimensional torus is 
generated owing to the SN bifurcation of a stable n-dimensional 
torus and saddle n-dimensional torus in a vector field. Such bi-
furcation structures are noteworthy. The coupled delayed-logistic 
maps capture the essence of the underlying mechanism of the 
quasiperiodic bifurcations.

In this study, we present a complex bifurcation transition from 
a conventional Arnol’d tongue to an invariant one-torus Arnol’d 
tongue [14] generated in a three-coupled delayed logistic map, 
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Table 1
Solutions and phenomena, where λi is the i-th Lyapunov exponent.

Map Lyapunov spectra Vector fields

Periodic solution (IT0) λ1 < 0 Limit cycle
Invariant one-torus (IT1) 

(or ICC)
λ1 = 0, λ2 < 0 Two-dimensional 

torus
Invariant two-torus (IT2) λ1 = λ2 = 0, λ3 < 0 Three-dimensional 

torus
Invariant three-torus (IT3) λ1 = λ2 = λ3 = 0, λ4 < 0 Four-dimensional 

torus

where an invariant one-torus corresponds to a two-dimensional 
torus in a vector field. The invariant one-torus is often called an 
invariant closed curve (ICC) in discrete time dynamics [23]. We 
discovered that two periodic points with a period of 93 coexist 
in the Arnol’d tongue; moreover, the two periodic solutions bifur-
cate to two coexisting invariant one-tori in the Arnol’d tongue that 
comprises 93 ICCs via two successive NS bifurcations. The bifurca-
tion structure is very complicated because two invariant one-tori 
coexist although they are in close proximity in the state space. 
We conduct a bifurcation analysis of this bifurcation structure and 
show that a doubly twisted NS bifurcation curve causes such a 
transition near a QNS bifurcation, and also generates double flip-
NS bifurcation. The detailed explanation for the derivation of the 
two coexisting periodic solutions is given in the Appendix. We as-
sert that the two coexisting attractors are linked through saddle 
solutions.

2. Results

We conduct a Lyapunov analysis of the three-coupled delayed 
logistic map represented by the following equation.

F (xn, yn, zn, wn, un, vn) : xn+1 = yn,

yn+1 = B1 yn(1 − xn) + ε1 wn + ε2 vn,

zn+1 = wn,

wn+1 = B2 wn(1 − zn) + ε3 vn + ε4 yn,

un+1 = vn,

vn+1 = B3 vn(1 − un) + ε5 yn + ε6 wn,

(1)

where ε1, ε2, ε3, ε4, ε5, and ε6 are coupling parameters. Because 
the single delayed logistic map generates an invariant one-torus 
via an NS bifurcation, the three-coupled delayed logistic map can 
generate an invariant three-torus with three zero Lyapunov expo-
nents. Throughout the discussion, we use

ε1 = 0.01, ε2 = 0.002, ε3 = 0.001, ε4 = 0.02,

ε5 = 0.01, ε6 = 0.01, B3 = 2.05, (2)

and allow parameters B1 and B2 to vary. The six Lyapunov expo-
nents (λ1, λ2, . . . , λ6) in Eq. (1) are calculated using the procedure 
presented by Shimada and Nagashima [33]. To distinguish the QNS 
bifurcation from an invariant one-torus to an invariant two-torus 
and the QNS bifurcation from an invariant two-torus to an invari-
ant three-torus, we denote the latter as QNS2 bifurcation. Similarly, 
we denote the QSN bifurcation from an invariant two-torus to an 
invariant three-torus as QSN2 bifurcation.

In this study, we regard a Lyapunov exponent as exact zero if 
the following condition is satisfied.

λi < 10/N, (3)

where N is the number of iterations. According to our numerical 
calculation, the fourth Lyapunov exponent λ4 is always negative. 
The terms and their abbreviations are listed in Tables 1 and 2. 
Fig. 1 shows a two-parameter Lyapunov diagram near the QNS2 bi-

Table 2
Classification of bifurcations.

Bifurcations Abbreviations

Neimark–Sacker bifurcation NS
Saddle-node bifurcation SN
Quasiperiodic Neimark–Sacker bifurcation from IT1 to IT2 QNS
(or Quasiperiodic Hopf bifurcation from IT1 to IT2) (or QH)
Quasiperiodic saddle-node bifurcation from IT1 to IT2 QSN
Quasiperiodic Neimark–Sacker bifurcation from IT2 to IT3 QNS2

(or Quasiperiodic Hopf bifurcation from IT2 to IT3) (or QH2)
Quasiperiodic saddle-node bifurcation from IT2 to IT3 QSN2

Fig. 1. Two-parameter Lyapunov diagram near the QNS2 bifurcation curve (M =
10,000,000 and N = 10,000,000 with a grid mesh of 1000 × 1000). (For interpre-
tation of the references to color in this figure, the reader is referred to the web 
version of this article.)

furcation curve. In Fig. 1, the regions generating periodic solutions, 
invariant one-tori, invariant two-tori, and invariant three-tori are 
shown in orange, blue, black, and dark green, respectively. Chaos 
is not observed in the parameter range of this diagram. As seen in 
Fig. 1, an invariant one-torus Arnol’d tongue bifurcates to an invari-
ant two-torus Arnol’d tongue via a QNS bifurcation. Furthermore, 
a conventional Arnol’d tongue is clearly observed inside them and 
transits to an invariant one-torus Arnol’d tongue through an NS 
bifurcation.

We focus on the bifurcation structures of the transition from 
the conventional Arnol’d tongue to the invariant one-torus Arnol’d 
tongue. At first glance, this transition appears to be a simple NS bi-
furcation similar to that presented in Ref. [23]. However, the bifur-
cation analysis clarifies that the two solutions coexist in the con-
ventional Arnol’d tongue and invariant one-torus Arnol’d tongue. 
To the best of our knowledge, such complex structure has not been 
reported to date.

Fig. 2 shows a magnified view of Fig. 1. The NS bifurcation 
curve and four (SN) bifurcation curves are explained below. The 
two coexisting periodic attractors with a period of 93 obtained 
at P in Fig. 2 are shown in Figs. 3(a.1) and 3(a.2), respectively. 
Figs. 3(a.1) and 3(a.2) are magnified and shown in Figs. 3(b.1) and 
3(b.2), respectively. It is recognized from Fig. 3 that these are dif-
ferent attractors. The procedure for obtaining these two periodic 
solutions is explained in Appendix A. In addition, by tracing the 
above-mentioned parameter values above from P in the diagram, 
the two coexisting periodic solutions bifurcate to two coexisting 
invariant one-tori. The two coexisting invariant one-tori are shown 
in Figs. 4(a.1) and 4(a.2) and magnified in Figs. 4(b.1) and 4(b.2), 
respectively.
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