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We study the enhancement of neural synchrony in a network of electrically coupled Hindmarsh Rose 
(HR) neurons. The behavior of the network under control by an external environment modeled by the 
Fitzhugh Nagumo (FN) is analyzed. Biologically, such a control system could mimic the modification of 
normal neuronal dynamics due to drugs or other chemical substances. We show that the environment 
could have as effect the suppression of chaos, enhancement of synchrony and favor interesting properties 
such as sub-threshold membrane oscillations, and oscillation death for relatively strong local coupling. 
Interestingly, we find that the electrical coupling between each two coupled HR and FN is less important 
to synchronization than the local coupling between the HR and the FN neurons. In other words, local 
interactions are found to play a stronger role in synchronization than long-range (global) interactions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A common approach to study synchronization is to consider a 
network in which the neurons are coupled either chemically or 
electrically. Synchronization is then analyzed by varying a single 
parameter that determines the coupling strength between the neu-
rons. The simplistic nature of this architecture limits the level of 
control over the system and has motivated studies of the com-
bined effect of chemical and electrical synapses on synchronization 
[1–12]. In this case, two parameters are required to model the 
network topology, allowing more flexibility in the control of syn-
chronization properties of the system.

In the present work, we consider an even more flexible neural 
network architecture in which each unit is a 3 dimensional (3D) 
system, which is dynamically coupled to a 2D control. We repre-
sent the 3D system with the HR neuron [13,14], whose dynamic is 
given by Eq. (1).

ẋ = y + ax2 − x3 − z + Ie
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ẏ = 1 − bx2 − y

ż = r[s(x − xo) − z] (1)

where x(t) represents the membrane potential, which is written 
in dimensionless units. The spiking variables y(t) and the bursting 
variable z(t) describe the rates of ion transport through fast and 
slow ion channels respectively. The variable a controls the spik-
ing activity of the HR neuron and allows the switching between 
bursting and spiking. r controls the speed of variation of the slow 
(bursting) variable and s is a recovery parameter. Following the lit-
eratures, values adopted here are a = 1, b = 5, r = 0.006, s = 4. 
The external input current Ie mimics a membrane input excita-
tion current. A minimum initial excitation current of Ie ≈ 1.37 is 
required to set the HR into an active state. In this work, we use 
Ie = 3.2, a value at which the HR is chaotic. The 2D control sys-
tem is modeled by the spiking Fitzhugh Nagumo (FN) neuron [15], 
whose dynamics is given by Eq. (2).

u̇ = u − u3 − v (2)

v̇ = u + ao − bo v,

in which u is the membrane potential and v is the recovery vari-
able representing the force that restores the resting state of the FN 
system. The parameters are chosen as ao = 0.05 and bo = 0.06, to 
allow for rapid spiking.
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The dynamical properties of the FN and HR neurons are well 
known and several studies on the synchronization properties of 
the latter have been reported. However, it is uncertain how a lo-
cal coupling of these two systems will affect synchronization when 
a network architecture is considered. Our goal is to study the ef-
fect of such local couplings on synchronization. The rest of this 
work is organized as follows: In Section 2, we analyze the syn-
chronization behavior of a single system unit, consisting of a HR 
neuron coupled to an FN neuron. An analysis of the bifurcation 
route of the oscillator is presented. Section 3 deals with the sta-
bility of the synchronized system in a network architecture. We 
determine the contributions of local coupling (interactions within
a single network unit) and global coupling (interactions between
network units) to the stability of the synchronized network. Our 
conclusions and remarks appear in Section 4.

2. The coupled HR and FN system

The HR and FN models have independently been widely used in 
computational studies of neural networks. These systems are well 
known for exhibiting a rich variety of neuronal behaviors, includ-
ing bursting and spiking. In the absence of electrical synapses, we 
represent the dynamics of a single unit of coupled HR and FN by

ẋ = y + ax2 − x3 − z + Ie + ε1u

ẏ = 1 − bx2 − y

ż = r[s(x − xo) − z] (3)

u̇ = u − u3 − v + ε2x

v̇ = u + ao − bo v.

In Eq. (3), the parameters ε1 and ε2 are used to control the local 
coupling within a single network unit. For the rest of our analysis 
and without loss of generality, we will assume ε1 = ε2 = ε . In en-
gineering, a control could be represented by a mechanical system 
[16,17]. In biological neurons, a control could model the modifica-
tion of normal neuronal dynamics, due to the action of drugs or 
other chemical substances introduced in the system. We note that 
communication between neurons entirely depends on the gener-
ation and propagation of the action potential. This is a chemical 
process that involves a change in ion concentration across the cell 
membrane. It is therefore not controversial to state that a chem-
ical substance can trigger electrical synapses. The main difference 
between electrical and chemical synapses resides on the range of 
interaction. The former are short range while the latter are long 
range.

The time series for the coupled systems for small values of 
ε are plotted in Fig. 1. When the control variable is set to zero 
Fig. 1(a) and (b), we observe the normal spiking and bursting 
behaviors for the FN and the HR respectively. That is, the two 
neurons operate on different duty cycles (fraction of time during 
which the neuron is active). For relatively small ε (weak coupling), 
we observe that bursting is damped in the HR while the duty cy-
cle of the FN is reduced (Fig. 1(c) to (f)). This suggests that the 
two neurons exchange their properties towards the achievement 
of an equilibrium state. Interestingly, we find that the HR neu-
ron is now active even for Ie = 0, indicating the emergence of a 
self-regenerative excitation property. This implies that the system 
is less sensible to initial conditions and has a higher propensity 
to achieve synchronization under the action of the control system 
(FN).

On the other hand, Fig. 2 shows time series of the HR and FN 
for large values of ε (strong coupling). A large frequency mismatch 
(Fig. 2(a) and (b)) is observed, and the time series are patterns of 
spike-trains interrupted by periods of sub threshold membrane os-
cillations. This behavior has also been observed in the ION [18]. 

Figs. 2(c) and (d) show wave pulses, suggesting a rhythmic inter-
action between the neurons and enhancement of synchronization. 
Finally, Figs. 2(e) and (f) (ε = 8.7) reveal complete inhibition for 
the two neurons characterized by persistent sub-membrane oscil-
lations. This suggests that any incoming stimulus has only a hyper 
polarizing (i.e. making the membrane potential to be more nega-
tive) effect on the receiving neuron. This phenomenon is known as 
oscillation death.

2.1. Fixed points and their stability

In this section, the analysis of fixed point and their stability 
is performed. The fixed points are obtained by setting dx

dt = dy
dt =

dz
dt = du

dt = dv
dt = 0 in equation (3). The location of the fixed points 

(xe, ye, ze, ue, ve) are determined by solving the coupled system:
{

u3
e + ( 1

b0
− 1)ue + a0

b0
− εxe = 0

x3
e + (b − a)x2

e + sxe − sx0 − 1 − I − εue = 0.
(4)

System (4) is a set of cubic polynomials in ue and xe respectively, 
with discriminants given by:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ue = 4
(

1
b0

− 1
)3 + 27

(
a0
b0

− εxe

)2

�xe = 4(b − a)3(−sx0 − 1 − I − εue)

+ 27(−sx0 − 1 − I − εue)
2

− 54(b − a)(−sx0 − 1 − I − εue)

− 9(b − a)2 + 108.

(5)

Hence, each can admit 3 equilibrium points when �ue < 0 (resp. 
�xe < 0), 2 equilibrium points when �ue = 0 (�xe = 0) and a 
unique equilibrium point when �ue > 0 (�xe > 0).

We note that equilibria of dynamical systems are not always 
stable. Since stable and unstable equilibria play quite different 
roles in the dynamics of a system, we find it useful to classify the 
equilibrium points (xe, ye, ze, ue, ve) for our system based on their 
stability. Therefore, we study the stability of (xe, ye, ze, ue, ve) by 
analyzing the eigenvalues of the characteristic equation of the jaco-
bian matrix given by (6), obtained by linear approximation of (3).

J0 =

⎡
⎢⎢⎢⎢⎣

2axe − 3x2
e 1 −1 ε 0

−2bxe −1 0 0 0
rs 0 −r 0 0
ε 0 0 1 − 3u2

e −1
0 0 0 1 −b0

⎤
⎥⎥⎥⎥⎦ (6)

It is easy to see from properties of matrix algebra that the 
eigenvalues λ1 = −1, λ2 = −r and λ3 = −b0 have negative real 
parts, leaving the remaining reduced matrix

J (xe, ue) =
[ −3x2

e − 2(a − b)xe − s ε

ε 1 − 3u2
e − 1

b0

]
(7)

The type of equilibrium point can be determined by the signs of 
the trace Tr[ J (xe, ue)] = [−3(x2

e + u2
e ) − 2(a − b)xe + (1 − s − 1

b0
)]

and the determinant Det[ J (xe, ue)] = [(−3x2
e − 2(a − b)xe − s)(1 −

3u2
e − 1

b0
) − ε2] [19]. The eigenvalues λ4/5 of the jacobian J (xe, ue)

are given by

λ4/5 = 1

2
{Tr[ J (xe, ue)]

±
√

{Tr[ J (xe, ue)]}2 − 4Det[ J (xe, ue)]} (8)

Table 1 below gives a summary of possible types of equilibria 
according to the values of xe , ue , Tr− , Tr+ , Det− and Det+ . Tr−
and Tr+ are respectively the negative and the positive zeroes of 
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