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We consider the propagation of sound in a turbulent fluid which is confined between two horizontal 
parallel plates, maintained at different temperatures. In the homogeneous fluid, Staroselsky et al. had 
predicted a divergent sound speed at large length scales. Here we find a divergent sound speed and 
a vanishing expansion coefficient at large length scales. Dispersion relation and the question of scale 
invariance at large distance scales lead to these results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical studies of fully developed turbulence, particularly 
in the physical sciences, have dealt with structure factor primar-
ily in the incompressible limit. The most well known result here 
is the Kolmogorov −5/3 law for the energy spectrum E(k) [de-
fined as E = ∫

E(k)dk, where E is the total kinetic energy per unit 
mass and k is the wave-number], which asserts that in the in-
ertial range (the intermediate zone far removed from the large 
energy injecting length scales and the small energy dissipating 
length scales), E(k) ∼ k−5/3 [1,2]. For weakly compressible fluids 
the first significant result was that of Staroselsky et al. [3], who 
made the remarkable observation that in such fluids the turbu-
lent fluctuations will cause the sound speed to increase at large 
length scales following a k−1/3 law (to actually see the k−1/3 be-
havior one would need to go to very small wave-numbers). Since 
there is a large background sound velocity, the turbulent contri-
bution (k−1/3) would have to dominate it to be clearly seen but 
there should be a enhancement which should be easier to detect 
as was indicated in the preliminary numerical work in Ref. [3]. 
Subsequent work [4] dealt with the interplay of the propagating 
sound and the eddy viscosity (scale dependent viscosity due to 
turbulent fluctuation [5]) and showed that it would lead to a fre-
quency dependence of the eddy viscosity and give rise to the scale 
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dependent sound velocity as a consequence of dynamic scaling [6]. 
It was noted that the frequency dependent eddy viscosity would 
show up in the shape of the frequency spectrum in a light scat-
tering study of a weakly compressible turbulent fluid. It should be 
borne in mind that the scaling in this context is, as in all cases of 
fully developed turbulence, applicable to the range of k-values such 
that kL � k � kD , where kL is a small wave-number correspond-
ing to the longer wavelengths where the external force operates 
and pumps in energy and kD is a large wave-number correspond-
ing to microscales where viscosity dissipates the energy. In this 
sense, the scaling in turbulence is always of restricted validity.

In the last few years attention has been devoted to turbulence 
in stratified fluids with an imposed temperature gradient causing 
the density variation. What has been a major point of discussion is 
the issue of whether the energy spectrum will be driven by the ki-
netic energy flux and lead to the Kolmogorov −5/3 law [1] or will 
it be dominated by the thermal flux and lead to E(k) ∼ k−11/5 as 
predicted by Bolgiano [7] and independently by Obukhov [8]. The 
heating from below scenario remains controversial inspite of a lot 
of experimental [9,10] and numerical efforts [11–15]. For the stable 
stratification it seems that there will be a crossover [16,17] from 
one spectrum to the other depending on the Richardson number 
Ri = α(�T )gd

v2
s

, where �T is the temperature difference between 
two horizontal plates separated by a distance d between which 
the fluid is confined. The thermal expansion coefficient of the fluid 
is α and vs is the root mean square velocity.
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In this work, we would like to explore the propagation of sound 
waves in a turbulent stratified fluid supporting a temperature gra-
dient. We consider a scaling theory for turbulent fluctuations and 
thus base our arguments solely on scale invariance. This is scaling 
in the extended sense (dynamic scaling which incorporates trans-
port phenomena [18]) which has successfully handled sound prop-
agation in critical fluids [19]. Our primary result is that in addition 
to a long wavelength increase in the sound velocity, there will be 
a decrease in the expansion coefficient at long wavelengths lead-
ing to an asymptotically vanishing expansion coefficient. Of course 
it does not actually vanish because of the restriction on the inertial 
range.

2. Dispersion relation

We begin by finding the dispersion relation for sound propa-
gation close to the steady state in a stratified fluid which is kept 
between two large horizontal heat-conducting parallel plates lo-
cated at z = 0 and z = d. The bottom plate is maintained at a 
temperature T1 and the top at T2 with �T = T1 − T2, where �T
can be positive or negative. The stationary fluid state profile is 
governed by velocity �u = 0, temperature Ts , density ρs , and pres-
sure P s .

Ts(z) = T1 − �T

d
z (1a)

ρs(z) − ρ

ρ
= α

[
T − Ts(z)

]
(1b)

∂ P s

∂z
= −ρs g (1c)

where we have assumed that the depth of the fluid layer is small 
enough to be able to talk about a mean density ρ . The hydrody-
namic equations in the Eulerian framework read

∂ �u
∂t

+ (�u · ∇)�u = − �∇ P

ρ
+ �g + ν∇2�u, (2a)

∂ρ

∂t
+ �∇·(ρ�u) = 0, (2b)

∂T

∂t
+ (�u· �∇)T = λ∇2T . (2c)

The acceleration due to gravity is �g , ν is the kinematic viscosity 
and λ is the thermal diffusivity. The stationary state profiles are as 
shown in Eqs. (1a) and (1b). We want to discuss the linearization 
around that profile to study the propagation of sound. The first 
thing we need to be careful about as pointed out by Clarke and 
Carswell [20] is that the perturbation around the stationary state 
should be taken to be Lagrangian. We will consider fluctuations 
�P , �ρ and ��u around the steady state in the Lagrangian picture 
(i.e., these are local changes only). So that we can write

�P = cs
2�ρ (3)

where cs is the velocity of sound. However to use Eqs. (2a)–(2c) we 
need the fluctuations in the Eulerian picture (δP , δρ, δ�u) where a 
change may be brought about due to displacement. For a spatially 
uniform stationary state the two pictures are equivalent but for a 
stratified fluid there will be a difference. If �ξ is a local displace-
ment, for any quantity X(�r, t), we have

δX(�r, t) = �X(�r, t) − (�ξ · �∇)Xs(�r, t) (4)

where Xs is the stationary value. Clearly, for the velocity field

δ�u = ��u (5)

and we will denote the fluctuation henceforth by �u(�r, t), since the 
steady state corresponds to zero velocity. For the others,

δP = �P + ξzρs g (6a)

δρ = �ρ − ρα
�T

d
ξz (6b)

δT = �T + ξz
�T

d
(6c)

Linearizing Eq. (2b) and using β = �T /d,

∂�ρ

∂t
− ραβ

∂ξz

∂t
+ ρs �∇ · �u + ραβuz = 0 (7)

Since uz = ∂ξz
∂t , we get

∂�ρ

∂t
+ ρs( �∇ · �u) = 0 (8)

From Eq. (2c), we find

∂�T

∂t
= λ∇2�T (9)

Finally linearizing Eq. (2a) about the stationary state yields

�̇u = − �∇δP

ρs
+ �∇ P s

ρs

δρ

ρs
+ ν∇2 �̇u

= − �∇�P

ρs
− g

ρs
( �∇ξz)ρs − ξzk̂gαβ − k̂g

�ρ

ρs

+ ξzk̂gαβ + ν∇2 �̇u (10)

Using Eq. (2b), one arrives at �∇ · �ξ = −�ρ/ρs and that reduces 
Eq. (10) to

�̇u = �∇(�P )

ρs
+ ν∇2�u = c2

s

�∇(�ρ)

ρs
+ ν∇2�u (11)

Taking a divergence leads to

∂

∂t
( �∇ · �u) = −c2

s
∇2(�ρ)

ρs
+ c2

s

�∇ρs

ρ2
s

· �∇(�ρ) + ν∇2( �∇ · �u)

= − c2
s

ρs
∇2(�ρ) + c2

s
αβ

ρs

∂(�ρ)

∂z
+ ν∇2( �∇ · �u) (12)

Combining with Eq. (8) we get the wave equation

∂2

∂t2
(�ρ) = (c2

s ∇2 − c2
s αβ

∂

∂z
)�ρ − ρν∇2( �∇ · �u)

= (c2
s ∇2 − c2

s αβ
∂

∂z
)�ρ + ν∇2 ∂(�ρ)

∂t
(13)

For the wave propagating with wave-number �k, �ρ ∝ ei(�k·�r−ωt) and 
we have a dispersion relation

ω2 = c2
s k2 + ic2

s αβk3 − νk2(iω) (14)

If the angle between �k and ẑ is θ , then

ω2 = c2
s k2 + ic2

s αβk cos θ − iνωk2 (15)

Solving for k,

2k = −ic2
s αβ cos θ ±

√
−c4

s α2β2 cos2 θ + 4ω2(c2
s − iνω)

c2
s − iνω

(16)

for low viscosity, i.e., νω
c2

s
� 1
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