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The non-equilibrium Green’s function method was employed to investigate the pressure effects on the 
interfacial thermal resistance of few-layer graphene. It is found that a compressive pressure of 10 GPa 
along the cross-plane direction can reduce the interfacial resistance by approximately 4 times, when 
compared with no applied pressure. As pressure is applied along both in-plane and cross-plane directions, 
the effects of the in-plane direction pressure on the cross-plane thermal transport are much weaker than 
those of the cross-plane pressure. Our results indicate that the interlayer interfacial thermal resistance of 
graphite can be modulated to a large extent by external pressure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, the two-dimensional monoatomic layer of sp2 car-
bon atoms, was first mechanically exfoliated from graphite in 2004 
[1]. During the past decade, it has attracted great interest in fun-
damental physics and for engineering applications due to its ex-
tremely high in-plane thermal conductivity k [2–4], great room-
temperature carrier mobility [5,6] and mechanical strength [7]. 
These outstanding properties stem from the strong sp2 carbon–
carbon bonds and the two-dimensional planar structure. In 2008, 
Balandin et al. [2] measured the thermal conductivity of suspended 
single-layer graphene to be as high as 5300 W/m K at room tem-
perature, which qualifies graphene to be a potential material for 
heat removal in thermal management. Compared with the single-
layer graphene, few-layer graphene (FLG) is more promising be-
cause k is less suppressed by extrinsic influences, such as sub-
strate and impurity scattering [8–10]. For example, by using a heat 
spreader method, Jang et al. [8] measured the thermal conductiv-
ity of SiO2-encased few-layer graphene (FLG). They found that k
increases from ∼50 W/m K to ∼1000 W/m K as the thickness of 
FLG increases from 2 to 21 layers.

It is well known that graphite is an anisotropic material, and 
the cross-plane thermal conductivity is approximately two orders 
of magnitude lower than the corresponding in the basal plane [11]. 
This is attributed to the robust in-plane bond strength and the 
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weak interfacial interaction. Both graphite and FLG can be viewed 
as layer-by-layer stacks of graphene. Therefore, the cross-plane k
of FLG could be quite small. Recent experimental results [12] have 
indicated that the cross-plane thermal conductivity of FLG is ap-
proximately 0.7 W/m K at room temperature with a thickness of 
approximately 35 nm. Thus, there is a need to further increase the 
cross-plane k of FLG for applications in heat dissipation.

Strain engineering is a widely used method to modulate the 
physical properties of graphene. For example, the thermal conduc-
tivity of suspended single-layer graphene can be reduced by load-
ing strain [13]. Above 110 K, compressive strain can decrease the 
specific heat of graphene [14]. Bu et al. [15] have shown that the 
Young’s modulus of graphene nanoribbons increases as the strain 
exceeds 18%. Using molecular dynamics, it has been found that 
strain can improve the thermal rectification in graphene nanorib-
bons [16]. However, in these works, only the in-plane strain and 
its effect on the in-plane physical properties have been taken into 
consideration. Only a few works [17] have investigated the influ-
ence of strain/pressure on the cross-plane properties of FLG and 
graphite. In this paper, we systematically investigated the thermal 
resistance of FLG under pressure, applied in-plane and cross-plane 
directions, to increase the interfacial thermal conductance, which 
can help increase the efficiency of FLG-based heat dissipation de-
vices.

There are two widely used models to illustrate phonon trans-
mission at an interface: the acoustic mismatch model and the 
diffusive mismatch model [18]. Both models neglect the atomic 
level detail of an interface and are usually applied under the 
assumption of a linear phonon dispersion relation. Moreover, both 
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models assume a perfectly welded contact (strong bond) at the 
interface. They are therefore clearly not applicable to the cases 
of graphite and FLG. Beyond these two models are atomic level 
methods, such as lattice dynamics [19], molecular dynamics (MD) 
[20–23] and nonequilibrium Green’s functions (NEGF) [24–26], that 
have been used to study interfacial thermal resistance. Recently, 
some works [21,22] have been reported regarding the cross-plane 
k of FLG that were obtained through MD simulations. Here, we use 
the NEGF method to systematically investigate the effects of cross-
plane and in-plane pressure on the interfacial thermal resistance of 
FLG. The phonon transmission across an interface can be calculated 
for different loading conditions, which can help to better explain 
the phonon transport through an interface. The phonon density of 
states is also calculated to explain the variations in phonon trans-
mission that are caused by pressure. Our results provide guidance 
to future experiments and to designing practical applications for 
the modulation of interfacial thermal resistance of graphite and 
FLG by the loading of an external pressure.

2. Theoretical model

In a linear system, three- or higher-order terms are ignored, 
while the vibrational normal modes of the system satisfy the fol-
lowing dynamical matrix equation [25]:
(
ω2I − K

)
� = I (1)

where ω is the angular frequency (ω = 2π f , f is the phonon fre-
quency), � is the amplitude of the normal modes and I is the 
identity matrix. The force constant matrix K of the system is de-
fined as:

Kij = 1√
mim j

⎧⎨
⎩

∂2 E
∂ui u j

i �= j

−∑
i �= j

∂2 E
∂ui u j

i = j
(2)

where i and j (i, j = x, y, z) represent the coordinate directions, m
is the atom mass, u is the displacement from the equilibrium and 
E is the total energy of the system.

Generally, it is difficult to solve equation (1), and the atomistic 
Green’s function is a powerful tool to obtain the dynamic response 
of the system under small perturbations [25]:
[
(ω + iη)2I − K

]
G = I (3)

where η is a small positive number and G is Green’s function ma-
trix [27–29].

The system in this paper is infinitely large in the x- and 
y-directions and is, therefore, infinite in the atom number. As a 
result, the harmonic force constant matrix K, defined in equa-
tion (2), is infinite. Considering the translational invariance of the 
basal plane, the harmonic matrix K can be described using the 
wave vector representation based on k‖ [24]. Thus, the FLG sys-
tem is divided into discrete layers along the cross-plane direction, 
where one unit cell in each layer can represent the vibration of 
the whole layer. In this work, two monolayer graphene sheets are 
treated as one discrete layer; thus, there are four atoms in one unit 
cell. Because each atom can vibrate in the x, y and z directions, 
a 12 × 12 harmonic matrix Kl is used to represent the intralayer 
interactions in the l plane, and another harmonic matrix Kl,m is 
used to represent the interlayer interactions between layer l and 
the right layer m.

Kl(k‖) =
p∑

n=0

Kt,ne−ik‖ Rn (4)

Kl,m(k‖) =
q∑

m=1

Kt,me−ik‖ Rm (5)

where t is an artificially selected unit cell in the l plane with p
neighboring unit cells, Rn is the relative position from unit cell n
to t , including itself. The summation index m loops from 1 to q, 
which is the number of the neighboring unit cells of t in the 
layer m. With the intralayer and interlayer matrices, the complete 
harmonic matrix of a system can be expressed. For instance, the 
force constant matrix to represent the vibration of l-layer central 
part is:

KC =

⎡
⎢⎢⎢⎣

K1 K12 0 · · · 0
K21 K2 K23 · · · 0
...

...
...

. . .
...

0 · · · 0 Kl,l−1 Kl

⎤
⎥⎥⎥⎦ (6)

where (K12)
+ = K21, and K1 = K2 = · · · = Kl . The wave vector k‖

can be expressed as kxb1 + kyb2, which represents the phonon 
vibration along some direction in a single, discrete layer. The struc-
ture of the discrete layer is two graphene sheets, so the first Bril-
louin zone (FBZ) is a regular hexagon. We discretize the FBZ into 
N × N parts, where each part can be represented by k‖ . The trans-
mission function and the heat flux of each part in the layer can 
be calculated independently. Therefore, the total heat flux can be 
obtained by adding all of the N2 parts.

According to Ref. [24], the total heat flux, from left to right, 
is defined as an integral over the frequency ω and the wave vec-
tor k‖:

Q =
¨

h̄ω

2π

[
f L(ω, T L) − f R(ω, T R)

]
Tr[ω,k‖] dk‖

(2π)2
dω (7)

where Tr[ω, k‖] is the transmission function, with frequency ω
and wave vector k‖ , of each phonon mode and is equal to 
Trace[�LG�R G+], which can be calculated by the method de-
scribed in Ref. [24]. The Green function G in the calculation of the 
transmission function is obtained by equation (3) with the deci-
mation technique [30]. The integral variable k‖ is limited in the 
first Brillouin zone, so discretizing the zone into N × N uniform 
parts serves to convert the integral over k‖ into the summation of 
over N2 wave vectors k‖ . Therefore, the equation (7) is equivalent 
to the following:

Q = 1

s

∞̂

0

h̄ω

2π
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][ 1

N2

∑
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]
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For equations (7) and (8), we used:

ˆ
dk‖ =

∑
k‖

(2π)2

S
=

∑
k‖

(2π)2

N2s
(9)

where s is the area of the unit cell, and f L(ω, T L) and f R(ω, T R)

are the phonon numbers of the left and right reservoir, respec-
tively. The phonon number at the specified frequency ω and tem-
perature Tα is calculated by the Bose–Einstein formula:

fα(ω, Tα) = 1

e
h̄ω

kB Tα − 1
, α = L, R (10)

where kB is the Boltzmann constant, and T L and T R stand for 
the temperatures of the two reservoirs. In the calculation, differ-
ent temperatures, T L and T R , are applied to establish a heat flux 
through the central part. The thermal conductance can then be 
obtained by calculating the ratio of the total heat flux to the tem-
perature difference:

σ = Q

T L − T R
= Q

�T
(11)
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