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This study presents the Fisher information for the position-dependent mass Schrödinger equation with 
hyperbolic potential V (x) = −V 0csch2(ax). The analysis of the quantum-mechanical probability for the 
ground and exited states (n = 0, 1, 2) has been obtained via the Fisher information. This controls both 
chemical and physical properties of some molecular systems. The Fisher information is considered 
only for x > 0 due to the singular point at x = 0. We found that Fisher-information-based uncertainty 
relation and the Cramer–Rao inequality holds. Some relevant numerical results are presented. The results 
presented show that the Cramer–Rao and the Heisenberg products in both spaces provide a natural 
measure for anharmonicity of −V 0csch2(ax).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a great interest in studying information theoretic measures for different quantum systems. This is due 
to the fact that information theory of quantum-mechanical systems is related to the modern quantum communications, computation and 
the density functional methods [1]. According to the density functional theory (DFT) initiated by Hohenberg and Kohn [2], the one-particle 
position and momentum probability densities are the basic elements for describing the physical and chemical properties of some molecular 
systems. The quantum information theory plays an important role in the measure of uncertainty and other quantum parameters of the 
system. The main measures of quantum information are the Shannon entropy [3] and Fisher information [4]. They are functions of a 
characteristic probability density. They are traditionally used in engineering, physics, applied mathematics, condensed physics, chemical 
and other related areas.

The Fisher information was introduced by Fisher as a measure of intrinsic accuracy in statistical estimation theory but its basic prop-
erties are not completely well known yet, despite its early origin in 1925 [5]. The importance of this was noticed by Sears et al. [6]. 
The authors found that the quantum mechanical kinetic energy can be considered as a measure of the information distribution. Fisher 
information has been very useful and has been applied in different areas. For example using the principle of minimum Fisher informa-
tion [7], one can obtain the equations of non-relativistic quantum mechanics [8], the time-independent Kohn–Sham equations and the 
time-dependent Euler equation of DFT [9]. Its local character is the main difference with respect to Shannon information which is global 
information measure. It is defined as the expectation value of the logarithmic gradient of density or as the gradient functional of density. 
So the Fisher information is given by [5]

I F =
∞∫

−∞
ρ(x)

[
d

dx
lnρ(x)

]2

dx =
b∫

a

[
ρ ′(x)

]2

ρ(x)
dx. (1)
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If the probability density is defined as ρn(x) = |ψn(x)|2, then

I F =
b∫

a

|ψ(x)|2
[

d

dx
ln |ψ(x)|2

]2

dx = 4

b∫
a

[
ψ ′(x)

]2
dx, (2)

which is not totally independent. There is an inequality which involves Fisher information and variance V = 〈
x2

〉 − 〈x〉2. It is called the 
Cramer–Rao uncertainty relation:

I F · V ≥ 1. (3)

The Fisher information is a derivative functional of the density, so that it is very sensitive to local rearrangements of ρn(x). In this paper 
we present the Fisher information of the position-dependent mass Schrödinger equation with hyperbolic potential.

The study of the Schrödinger equations with a position-dependent mass (PDM) is a very useful model of interest since the early days of 
solid state physics and in many applied branches of quantum physics such as condensed matter physics, material science, nuclear physics, 
etc. Special application of principal concept of PDM is found in the investigation of electronic properties of semiconductors, quantum dots 
and wells, etc. [10].

The rest part of this work is organized as follows: In Section 2, we give a brief review of the position-dependent mass Schrödinger 
equation. A particular case of the hyperbolic potential is presented. In Section 3, we first present the normalized wave function in position 
space and then calculate the Fisher Information I F , the Heisenberg uncertainty product and Cramer–Rao product of hyperbolic cosecant 
potential for various values of potential parameter a and for few states n = 0, 1, 2. Finally, we give some concluding remarks in Section 4.

2. Calculation of the wave functions

The Schrödinger equation with the position-dependent mass for an arbitrary potential V (x) can be expressed as [10–13]

∇x

(
1

m(x)
∇xψ(x)

)
+ 2m0 [E − V (x)] ψ(x) = 0, (4)

where E is the energy spectrum and solitonic smooth effective mass distribution (m(x)) is taken as m(x) = m0(x)sech2(ax), which has been 
used widely in condensed matter and low-energy nuclear physics. Taking ψ(x) = coshτ (ax)F(ax) and then substitute it into equation (4), 
we have

F ′′(ax) + 2a(1 + τ ) tanh(ax)F ′(x) + sech2(ax)

2

{
a2τ (τ + 2) cosh(2ax) +

[
4m0 (E − V (x)) − a2τ 2

]}
F(ax) = 0. (5)

Further substitution of δ = 2m0/a2 and γ = ax into equation (5) gives

F ′′(γ ) + 2(1 + τ ) tanh(γ )F ′(γ ) +
{
τ (τ + 2) tanh2(γ ) + [τ + σ (E − V (y))] sech2(γ )

}
F(γ ) = 0. (6)

Considering a new relation of the form sech(γ ) = cos(z) and tanh(γ ) = sin(z), which transform the boundary condition of the wave 
function from (−∞, ∞) to (−π/2,π/2) and taking τ = −1/2, then the above equation (6) can be simplified further as

−F ′′(z) + V(z)F(z) = εF(z) with V(z) = 3

4
tan2(z) + σ V (z) + 1

2
, ε = δE. (7)

In recent study [14], the Shannon entropy for the position-dependent Schrödinger equation for a particle with a nonuniform solitonic mass 
density is evaluated in the case of a trivial null potential. It was found that the negative Shannon entropy exists for the probability densities 
that are highly localized. In this work, we consider a special squared hyperbolic cosecant potential V (ax) = −V 0csch2(ax) and then analyze 
its quantum-mechanical probability cloud for the ground and excited states by means of local (Fisher information) information-theoretic 
measure. Now, substituting this potential into equation (7) and recalling the relation sech(γ ) = cos(z), one has V(z) = 3 tan2(z)/4 −
δV 0 cot2(z) + 1/2. It is interesting to note that this family of potentials represents different potentials in z space. For example, for V0 =
δV 0 > 0, they look like infinitely deep funnels and behave like the potential 1/x, while for V0 < 0 they become infinite double-wells and 
if V0 = 0 they become the infinite single-well.

In order to obtain exact solution to this system, we take the following wave function ansatz:

F(z) = sinμ(z) cosν(z)G(z), (8)

where the parameters μ and ν are calculated by considering the behaviors of the wave functions at z ∼ 0 and z ∼ π/2 as μ = 1/2 +√
1 − 4V0/2 and ν = 3/2 respectively. The function G(z) satisfies the following differential equation

G′′(z) + 2 [μ cot(z) − ν cot(z)]G′(z) + (ε − μ − ν − 2μν)G(z) = 0. (9)

Using a change of variable ξ = sin2(z), the equation is transformed to

ξ(1 − ξ)G′′(ξ) +
[
μ + 1

2
− (1 + μ + ν)ξ

]
G′(ξ) + 1

4

(
ε − 1

2
− μ − ν − 2μν

)
G(ξ) = 0, (10)

whose solution is given by hypergeometric function 2 F1(a, b; c; ξ) with the parameters

a = μ

2
+ ν

2
− 1

2

√
ε + 1

4
− V0, b = μ

2
+ ν

2
+ 1

2

√
ε + 1

4
− V0, c = μ + 1

2
. (11)
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