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The electronic and transport properties for armchair-edge silicene nanoribbons (ASiNR) with effective 
spin–orbit coupling and potential energy were investigated by using the non-equilibrium Green’s function 
method. The energy gaps and the conductance for ASiNRs can be effectively modulated by effective spin–
orbit coupling λSO and the potential energy V 0. With increasing λSO, the energy gap for 6-ASiNR and 
7-ASiNR decreases, while it remains zero for metallic 8-ASiNR. Interestingly, an energy gap appears for 
8-ASiNR in presence of V 0, which results in the appearance of a conductance gap for 8-ASiNR system. 
Additionally, the dependence of conductance on Anderson disorder strength has been studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Silicene, a monolayer of silicon atoms forming a two-dimen-
sional honeycomb lattice, has been synthesized [1–5] and attracts 
much attention [6–10]. Almost every striking property of graphene 
could be transferred to this innovative material. However, silicene 
has a buckled structure and its relatively strong spin–orbit cou-
pling (SOC) opens a gap between the conduction and valence 
bands. Facilitated by this buckling, the band-gap edges of silicene 
are split by an external perpendicular electric field [7]. Further-
more, silicene has the advantage with its easy incorporation into 
modern silicon-based electronic technology. This advantage with 
the dissipationless spin currents may make the silicene particularly 
attracting for technological applications in spintronics [11,12].

On the other hand, silicene nanoribbons (SiNRs) have been syn-
thesized on Ag(110) and (100) surfaces [13–15]. Theoretical studies 
have been performed on the electronic properties of SiNRs. For 
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example, Yi Ding and Jun Ni have investigated that the gap of 
armchair-edge SiNR (ASiNR) oscillates with a period of 3 dimers as 
nanoribbon width is increasing, and the zigzag-edge SiNR (ZSiNR)
becomes half metal under a transverse electric field [16]. Based on 
the first-principles calculation, Dong et al. have found that Stone–
Wales defects can make semiconducting ZSiNRs become metallic 
or half-metallic [17]. An et al. have studied the interplay between 
the edge and bulk states induced by the Rashba SOC for a ZSiNR
[18]. Furthermore, the transport properties for ZSiNRs have been 
studied vastly. Kang et al. have found that ZSiNRs show symmetry-
dependent transport property similar to those of zigzag graphene 
nanoribbons (ZGNRs) [19]. Giant magnetoresistance in a ZSiNR 
connecting to two silicene sheets has been predicted by Xu et 
al. [20]. Tsai and collaborators have predicted that a gated sil-
icene quantum point contact can be used as a tunable spin polar-
izer with 98 percent spin polarization [12]. Using non-equilibrium 
Green’s function, Farokhnezhad et al. have found that complete 
spin polarization can take place in the presence of perpendicular 
electric field for anti-parallel configuration and the nanoribbon can 
work as a perfect spin filter [21]. However, the previous works on 
electronic and transport properties through a silicene-based sys-
tem are mainly focused on ZSiNR systems [17–21]. Investigation 
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Fig. 1. An ideal ASiNR with width N = 11 is connected to planar silicene nanorib-
bons as left and right leads (gray areas). A unit cell of an ASiNR represented by 
dashed lines contains 2n numbers of lattice sites labeled as 1A, 1B, · · ·, NA, NB.

of the electronic and transport properties that are modified by the 
spin–orbit interaction as well as the perpendicular electric field in 
ASiNR systems is sparsely reported, and it is intriguing to investi-
gate how these properties are modified by the spin–orbit interac-
tion and the perpendicular electric field [22,23]. Here, we address 
this issue.

In this paper, we present a comprehensive investigation of the 
electronic and transport properties for a ASiNR system under ef-
fective SOC and potential energy. By using the non-equilibrium 
Green’s function (NEGF) method combined with the tight-binding 
approximation, the dependence of energy band gap and conduc-
tance for the systems on the effective SOC λSO and the potential 
energy V 0 has been calculated. Further, the dependence of con-
ductance on the Anderson disorder strengths has been examined. 
It is demonstrated that the energy gaps for semiconducting ASiNRs 
are sensitive to the effective SOC λSO and the potential energy V 0. 
With increasing λSO , the energy gaps for semiconducting 6-ASiNR 
and 7-ASiNR systems decrease, while the energy gap remains zero 
for metallic 8-ASiNR system. On the contrary, the energy gaps for 
6-ASiNR and 7-ASiNR systems increase when V 0 increases. Inter-
estingly, an energy gap appears in presence of V 0 for 8-ASiNR 
system, and it is dramatically enlarged with increasing the po-
tential energy V 0. Furthermore, the conductance for three systems 
strongly depends on the effective SOC and the potential energy be-
cause the energy band structures can be effectively modulated by 
λSO and V 0. Moreover, the conductance plateaus for three systems 
can survive for small and moderate Anderson disorder strengths, 
but they can be strongly suppressed for larger disorder strengths.

2. Model and method

The device model considered here is an ASiNR divided into 
three regions (Fig. 1): the device region, the left lead and the right 
lead, where the armchair silicene sheet is located in the xy-plane 
and an electric field is perpendicularly applied to the plane. We 
use N , the number of A(B)-site atoms in a unit cell, to denote 
ASiNR with different width. The ribbon with N Si–Si chains is la-
beled by N-ASiNR. Here, the three typical numbers (6, 7 and 8) of 
N are chosen only to make N in the forms 3n, 3n + 1 and 3n + 2
with positive integer n since the energy band structures of ASiNRs 
are highly sensitive to these typical ribbon widths [16], which is 
similar to that of armchair graphene nanoribbon [24]. The hard-
wall condition is imposed on the edges of the ASiNR.

The total Hamiltonian for the system considered reads

H = HC + H L + H R + HTα, (1)

where HC describes the device region, H L(R) is the Hamiltonian 
for the left (right) ASiNR lead, and H Tα (α = L/R) for the coupling 
between central device region and leads. We assume that the elec-
tric field and the disorder exist only in the central device region. 

Here, the SOC are included for calculation of the self energies. In 
the tight-binding approximation, these partial Hamiltonians can be 
respectively written as following [6,7]:
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where c†
is (cis) create (annihilate) an electron with spin s at site i. 

〈i j〉 stands for the nearest-neighbor pair, and � i j � stands for 
the next-nearest neighbor pair. The effective SOC parameter and 
the Rashba SOC parameter are λSO = 3.9 meV and λR = 0.7 meV
[7]. σ = (σx σy σz ) is the Pauli matrix. εC is the on-site en-
ergy in the center region. The nearest-neighbor hopping energy is 
t = tα = 1.6 eV. vij is defined as vij = (di × d j)/ | di × d j | with di
and d j the two bonds connecting the next-nearest neighbors di j , 
μi j = ±1 for the A (B) site, and d0

i j = di j/ | di j |. ζi = ±1 for the A 
(B) site and 2� = 0.46 Å is buckling distance. When a perpendic-
ular electric field E Z is applied, a voltage energy V 0 = 2e�E Z is 
created between the two sublattices, so the dependence on E Z is 
also referred to in the following as V 0 dependence. In the presence 
of Anderson disorder in the central region, the on-site disorder en-
ergy wi , uniformly distributed in [−W /2, W /2], is nonzero in the 
central region with the disorder strength W .

In what follows we show how to calculate the band structure 
and the conductance of the ASiNRs. Actually, the overall config-
uration of this system shown in Fig. 1 can be considered as a 
linear chain of iterative cells whose unit cell contains 2N sili-
con atoms. The cells forming the left lead are located at sites 
−∞, . . . , −1, 0 of the chain; likewise, those for the central de-
vice region are placed at 1, . . . , M − 1 and for the right lead at 
M, M + 1, . . . , ∞. The electron wave vector k along the ribbon is 
a good quantum number if the bulk periodicity parallel to these 
armchair cells is preserved. This assumption provides a straightfor-
ward way to calculate the band structure within the tight-binding 
model. By applying Bloch’s theorem, the k-dependent Hamiltonian 
can be written as [25]

H0 = H0,0 + H0,1eika + H−1,0e−ika, (2)

where H0,0 is a unit cell Hamiltonian matrix at site 0 of the 
chain, H0,1 (H−1,0) are the coupling matrices with the right-hand 
(left-hand) adjacent cells, and a is the length between two nearest-
neighbor unit cells. The above Hamiltonian can be diagonalized to 
yield the energy band structure according to Schrödinger equation 
H0ψnk = Enkψnk , where the Block state ψnk is a column vector in 
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