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The melting curve of the modified Lennard-Jones solid is derived using a one-phase approach. The Padé 
approximation employed for solving the melting-curve equation converges at the middle stage, giving 
rise to the well-known Simon curve that satisfactorily captures the actual melting curve found from 
a molecular dynamics simulation over a pressure range of four orders of magnitude. This situation is 
justified because the solid under consideration was shown to satisfy the thermodynamic condition under 
which Simon’s curve becomes exact.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Melting has been studied extensively. Theoretical viewpoints, 
including the classical one leading to Lindemann’s theory of melt-
ing phenomena [1], are beautifully reviewed in Ref. [2].

A major issue in melting phenomena is to determine the transi-
tion temperature, i.e., the melting point. Two approaches are pos-
sible. The first, referred to as a two-phase approach, is to look for 
the temperature at which the free energies of the crystalline and 
liquid phases equilibrate [2]. The second, one-phase approach, is 
to assess the melting point from the properties of the crystalline 
phase. The terms “one- (two-) phase simulation” were first coined 
by Belonoshko [3]. Here, the terms “one- (two-) phase approach” 
have a wider meaning and can refer to methods other than simula-
tion. The two melting points derived by the two approaches do not 
necessarily coincide for a given substance; the melting point deter-
mined from the two-phase approach is consequently the equilib-
rium one, whereas that from the one-phase approach may involve 
kinetic effects. A major strategy in the one-phase approach to iden-
tify the stability limit of a solid state is to exploit the weakening 
of the restoring forces against shear deformation with increasing 
temperature [4]. However, defects are claimed to be responsible for 
forming liquid droplets below the nominal melting point [5]. The 
essential mechanism that makes a solid thermodynamically unsta-
ble is therefore still controversial. The situation is even worse at 
high pressures. Indeed, Liu et al. [6] stated that “the prediction of 
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the pressure dependence of the melting temperature is problem-
atic”.

In this Letter, we examine the pressure dependence of the melt-
ing temperature based on the one-phase approach proposed by 
Kumari and Dass [7] and Kechin [8]. We have already reported that 
the procedure works well for a model molecular solid [9]. We em-
ploy here a simpler system of point particles to confirm the main 
findings in Ref. [9], thereby consolidating the Kumari–Dass–Kechin 
one-phase approach. This approach relies on the thermodynamic 
information of the solid phase in question. In our numerical simu-
lation presented below, the size of the model is chosen so that it 
is large enough to extract the thermodynamic quantities, but small 
enough to inhibit the heterogeneous nucleation of liquid droplets 
before reaching the catastrophe. No free surfaces are involved in 
our model.

2. Model and method

A classical ensemble consisting of point particles is considered 
in this study. The essential ingredient to be included in the model 
when considering melting is the attractive interactions between 
the particles. The Lennard-Jones (LJ) potential is often employed in 
such statistical mechanical problems. Indeed, the aforementioned 
mechanism of shear instability upon melting was identified by a 
model that employed the LJ potential [4]. Its attracting tail, how-
ever, extends to infinity, and a truncation is unavoidable when 
treated numerically. We must therefore invoke a large system size, 
thereby allowing a large cutoff length of the tail, to assess the in-
trinsic thermodynamic properties of the LJ system. (This motivated 
the investigation of effective recipes for truncating the tail [10]. 

http://dx.doi.org/10.1016/j.physleta.2015.10.009
0375-9601/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2015.10.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:fuchizak@phys.sci.ehime-u.ac.jp
http://dx.doi.org/10.1016/j.physleta.2015.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.10.009&domain=pdf


294 K. Fuchizaki, K. Okamoto / Physics Letters A 380 (2016) 293–298

The equilibrium melting curve of Xe was extensively discussed 
based on a two-phase simulation utilizing the LJ potential [11].)

With this circumstance in mind, we have proposed adopting 
as a substitute for the LJ potential the modified Lennard-Jones 
(mLJ) potential [12], which mimics the shape of the LJ potential 
as closely as possible but has a finite tail. The functional form of 
the mLJ potential is as follows [12]:

φm =

⎧⎪⎨
⎪⎩

4(r−12 − r−6) + C1 (r ≤ 2.3)

C2r−12 + C3r−6 + C4r2 + C5 ( 2.3 < r ≤ 2.5)

0 (2.5 < r),

where the interparticle distance r is measured in units of the 
length parameter σ and the potential φm in units of the energy pa-
rameter ε . (For example, it is appropriate for argon to choose σ =
3.389 × 10−1 nm and ε = 1.930 × 10−21 J [13].) The numbers {Ci}
(i = 1, . . . , 5) were refined as C1 = 0.0163169237, C2 = 3136.5686, 
C3 = −68.069, C4 = −0.0833111261, and C5 = 0.746882273 [14]. 
We have thus far concentrated our effort on standardizing the mLJ 
system through our studies of the phase diagram [14,15] and the 
equations of state (EOSs) for the fluid [13] and solid [16] states. 
The mLJ system is superior, not only in the unambiguity associ-
ated with the treatment of the tail, but also in the ability to predict 
thermodynamic properties from the rich knowledge base for the LJ 
system [17].

We now examine the melting curve of the mLJ solid. Note that 
here we use the term “melting curve” in a somewhat different 
way than usual. Refer to the last paragraph in this section. To this 
end, we first conducted an isothermal–isobaric molecular dynam-
ics (MD) simulation to find the melting point, Tm. (From now on, 
the values for temperature, T , and pressure, p, are given in re-
duced units, i.e., in units of ε/kB, where kB is Boltzmann’s constant, 
and ε/σ 3, respectively.) The method of the simulation was essen-
tially the same as that described in Ref. [14], with an improvement 
to enhance parallelization [16]. A system consisting of 6912 parti-
cles was employed throughout the simulation to reduce finite-size 
effects as much as possible [18]. For other technical details of the 
simulation, see Ref. [14].

The melting point was determined for p ∈ [10−4, 10] as fol-
lows. For a given p in the range, the system, in which the particles 
were initially located on the fcc lattice points, was equilibrated at 
the temperature T0 = 0.2. Five thousand MD steps were sufficient 
for this equilibration and the subsequent 5000 steps were used 
to evaluate the average system’s volume. The system was then 
heated using temperature steps of 8.35 × 10−3 (which corresponds 
to 1.2 K for argon) and the average volume was evaluated after 
equilibration. This procedure was repeated until the system expe-
rienced a sudden jump in the average density. The melting point 
was defined to be the midpoint of the sudden jump. The melting 
point thus determined has an ambiguity equal to the width of the 
temperature step. This ambiguity was very small compared with 
the ambiguities associated with the EOSs and is ignored in the fol-
lowing argument.

As evident from the method of determination, the melting point 
under consideration represents the thermodynamic stability limit 
of the solid state and hence gives an upper bound for the equilib-
rium melting point defined from the two-phase approach.

3. Results and discussion

To keep the mathematical expressions to be developed below 
simple, the specific volume v ≡ V /V 0, where V 0, the volume at 
(T0, p0), is used instead of V . p0 denotes the reference pressure. 
(In this study, we chose rather arbitrarily p0 = 2.417 ×10−3, which 
corresponds to 1.2 atm for argon [13].) With the one-phase ap-
proach, a melting curve is then given by the solution to the fol-
lowing thermodynamic identity [7,8]:

d ln Tm

dp
= �m

Km
, (1)

where Km is the bulk modulus at the melting point and �m is 
defined by

�m = −d ln Tm

d ln vm
. (2)

(Quantities with the suffix “m” represent throughout those quan-
tities measured along the melting curve.) Instead of evaluating 
the right-hand side (RHS) of Eq. (2), �m was usually reduced [7,
19–21], assuming the validity of Lindemann’s melting law [1], to 
Grüneisen’s parameter γm:

�m = 2

(
γm − 1

3

)
. (3)

By referring to the appropriate or approximate value for γm and 
by using the measured value for Km, Kechin and others have 
attempted to rationalize the melting curves of some substances 
[7,22].

An important step in the derivation of the melting curve based 
on Eq. (1) was the evaluation of Eq. (3) and Km (i.e., the numerator 
and the denominator of the RHS of Eq. (1)) separately as functions 
of p [7]. Kechin (independently) proposed introducing the Padé ap-
proximation to the RHS of Eq. (1) [8]:

�m

Km
= �m0 + �′

m0�p + · · · + �
(L)
m 0(�p)L

Km0 + K ′
m0�p + · · · + K (M)

m 0(�p)M
, (4)

where �p = p − p0, and hence the subscript “0” is understood 
to represent the quantity evaluated at p0. In Eq. (4), �m and Km
are expanded up to the Lth and the Mth orders, respectively. As 
stressed by Kechin [8], the ingenious approximation of Eq. (4), 
when substituted for the RHS of Eq. (1), can give a solution with a 
melting maximum. Equation (4) tries to represent the RHS simply 
as a quotient in which the numerator and denominator are evalu-
ated separately around p0. Because the p-dependence of the RHS 
is not completely known for the entire p range (unless a drastic 
approximation such as that represented by Eq. (3) is invoked), the 
coefficients involved in Eq. (4) are not determined uniquely at this 
moment. Therefore, the use of “Padé approximation” is not strict 
in this context.

One important viewpoint is missing, however: the substitution 
tacitly assumes that even though it is abnormally shaped with a 
maximum, the melting curve is smooth, i.e., everywhere differen-
tiable. The validity of Eq. (4) is open to serious question when the 
melting curve under consideration has a singularity. This seems 
to be the case, for example, for the melting curves of molecular 
crystalline SnI4 [23] and GeI4 [24]. The slope of the melting curve 
changes abruptly at ∼ 1.5 GPa for SnI4 [23] and at ∼ 3 GPa for 
GeI4 [24]. According to a theoretical consideration, the breakpoint 
of the melting curve is speculated to be the triple point between 
the solid and the two liquid phases [25].

We call a melting curve “normal” when it is a smooth, upward 
convex function of p. The melting curve obtained through solving 
Eq. (1) seemed to converge with increasing L and M in Eq. (4)
to the normal part of SnI4’s [26] and GeI4’s melting curve [24]
when the values extracted from the EOS for each solid phase [24,
27] were substituted into the RHS of Eq. (4). The existence of an 
apparent singular point on the melting curve, however, prevented 
us from firmly confirming the convergence. We could not identify 
the microscopic origin that makes the shape of the melting curves 
abnormal, and we therefore could not reproduce the melting curve 
of GeI4 [9]. This failure to reproduce the singularity became, on 
the other hand, an advantage in demonstrating the convergence 
behavior [9]. This motivated us to examine a simpler system to 
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