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We study the tunneling dynamics of bosons with periodically modulated interaction held in a triple-
well potential. In high-frequency approximation, we derive a set of reduced coupled equations and 
the corresponding Floquet solutions are obtained. Based on the analytical results and their numerical 
correspondence, the directed selective-tunneling effect of a single atom is demonstrated when all bosons 
are prepared in middle well initially. A scheme for separating a single atom from N bosons is presented, 
in which the atom can be trapped in right or left well by adjusting the modulation strength.
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1. Introduction

The coherent manipulation for a quantum system subjected to 
an external field has been an attractive subject in recent years in 
both theoretical and experimental physics [1,2]. Coherent control 
of quantum tunneling for a periodically driven system is one of 
the most important technologies due to its many applications [3], 
such as quantum device [4], artificial magnetic fields [5], and quan-
tum information processing [6,7], etc. One of the recent topics in 
the quantum control of tunneling dynamics is the effect known 
as coherent destruction of tunneling (CDT) [8], namely, when the 
strength and frequency of driving force are chosen appropriately, 
a particle initially located in one of two wells never tunnels to the 
other. The CDT is based on the fast modulation of level unbalance 
and the corresponding effect has been verified experimentally [9,
10]. Then, a selective CDT effect was found numerically in a driven 
quantum-dot array [11], in which the quantum tunneling between 
dots can be suppressed selectively. Such an effect has been demon-
strated analytically in a driven tight-binding chain [12]. Further, 
the selective CDT effect has been introduced to realize a directed-
motion scheme of atoms held in a driven one-dimensional bipar-
tite lattice [13,14].
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It is well-known that the sign and strength of the s-wave scat-
tering length of interacting cold atoms can be adjusted by using 
magnetic or optical Feshbach resonances [15]. This technique has 
been used extensively [16] and many interesting phenomena were 
demonstrated in the framework of mean-field and Bose–Hubbard 
models. Such as stable Bloch oscillations [17], self-confinement 
of two- and three-dimensional Bose–Einstein condensates (BECs) 
without an external trap [18] and the generation of nonground-
state BECs [19]. In a two-mode Bose–Hubbard model, a butterfly 
pattern of Floquet spectrum is displayed based on the double-
kicked modulation of atomic interaction [20]. And in Ref. [21], 
Gong, Molina and Hänggi have proposed a many-body CDT effect 
by the periodic modulations of atomic interaction, in which only 
an arbitrarily, a priori prescribed atoms are allowed to participate 
in the tunneling process between double wells. An optical realiza-
tion of the corresponding phenomenon was presented based on 
light transport in engineered waveguide arrays [22]. Further, the 
double-well model has been extended to an optical lattice sys-
tem for the ultracold atoms with periodically modulated interac-
tion [23]. An effective Hubbard-like model was presented, which 
includes a nonlinear hopping that depends on the difference of oc-
cupations at neighboring sites. The rich physics introduced by this 
hopping were discussed, such as pair superfluid phases, exactly 
defect-free Mott-insulator states, pure holon, doublon superfluids 
and quantum Peierls phase, etc.
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Recently, the tunneling dynamics of cold atoms held in a triple-
well potential have attracted substantial interest and were in-
vestigated extensively. Such as stimulated Raman adiabatic trans-
port [24], the transistor-like effect [25] and the effect of dipole–
dipole interaction [26,27], etc. In this paper, we further consider 
the tunneling dynamics of bosons held in a triple-well potential 
and we are interested in the quantum manipulation of tunneling 
dynamics based on the periodical modulation of atomic interac-
tion. In our work, we choose bias potential ε0 = 0.5ω and time-
independent interaction U0 = 0.5ω/(N − 1) with ω, N being the 
modulating frequency and number of bosons, respectively. Under 
high-frequency approximation, we obtain a set of truncated cou-
pled equations that relate to the subspace spanned by Fock states 
{|0, N −1, 1〉, |0, N, 0〉, |1, N −1, 0〉}. When initial state is located in 
this subspace, we obtain a set of analytical Floquet solutions and 
the corresponding superposition states. Based on these analytical 
results, the directed selective-tunneling effect of a single boson is 
demonstrated, in which the good correspondence is exhibited be-
tween analytical and numerical results. It is shown that a single 
atom can be separated from N bosons and trapped in right or left 
well by adjusting the modulation strength. The corresponding re-
sult presented in our work may be useful in the design of atomic 
devices [4,6,25,28].

2. Floquet solutions under high-frequency approximation

We consider a system described by the three-mode Bose–
Hubbard Hamiltonian, which is realized physically by bosons 
trapped in a triple-well potential. We consider the interaction 
strength is modulated periodically in time and the system is de-
scribed by corresponding Hamiltonian as [21–23]

Ĥ(t) = −Ω
∑
〈k,l〉

(
ĉ†

kĉl + ĉ†
l ĉk

) + U (t)

2

3∑
k=1

ĉ†
kĉ†

kĉkĉk

+ ε0
(
ĉ†

1ĉ1 − ĉ†
3ĉ3

)
, (1)

where ĉ†
k (ĉk) creates (annihilates) an atom in the well k. Ω > 0 is 

the couplings between nearest-neighbor wells and ε0 is the poten-
tial bias along the triple-well axis. The on-site interaction between 
atoms is characterized by U (t) = U0 + U1 cos(ωt), which can be 
controlled by using suitable Feshbach resonances [15].

In our paper, we have set h̄ = 1 and U0, U1, ε0, ω and Ω

are in units of reference frequency ω0 on the order of 102 s−1

[29], and the time t has been normalized in units of ω−1
0 . To 

study tunneling dynamics of bosons held in triple-well system, 
we introduce the Fock basis |n1, n2, N − n1 − n2〉 with n1, n2 and 
N − n1 − n2 being the number of atoms in the left, middle and 
right wells, respectively. In this paper, we consider the total num-
ber of atoms N is a constant. On the basis of Fock states, the 
corresponding quantum state Ψ (t) can be expanded as |Ψ (t)〉 =∑N

n1=0
∑N−n1

n2=0 an1,n2(t)|n1, n2, N − n1 − n2〉, where an1,n2(t) denote 
the time-dependent probability amplitudes that obey the normal-
ization condition 

∑N
n1=0

∑N−n1
n2=0 |an1,n2(t)|2 = 1. Inserting Eq. (1)

and the expanded expression of |Ψ (t)〉 into Schrödinger equation 
i ∂Ψ (t)

∂t = H(t)Ψ (t) results in a set of coupled equations of an1,n2 (t)
with equation number ζ = (N + 1)(N + 2)/2.

It is very difficult to obtain the exact solutions of all coupled 
equations because of the periodically varying coefficients. However, 
the coherent manipulation of tunneling dynamics can be investi-
gated analytically in high-frequency approximation with ω � Ω . 
We introduce a set of slowly varying functions bn1,n2(t) through 
the transformation [30] an1,n2(t) = bn1,n2(t) exp{−i 

∫ t
0 [0.5U (t)(n1

(n1 −1) +n2(n2 −1) +(N −n1 −n2)(N −n1 −n2 −1)) +ε0(2n1 +n2 −
N)]dt} with |an1,n2 (t)|2 = |bn1,n2(t)|2, which leads to that the high-
frequency oscillating modulation will be contained in the phase 

factors. Resembling the fractional photon resonance effect [31], we 
set the parameters ε0 = 0.5ω, U0 = 0.5ω/(N − 1), and a set of 
coupled equations of bn1,n2(t) can be obtained as

iḃ0,N−1(t) = −√
NΩb0,N(t)e−i[ωt+U1(N−1) sin(ωt)/ω]

− √
N − 1Ωb1,N−2(t)e−i[ ωt

2(N−1)
−U1(N−2) sin(ωt)/ω]

− √
2(N − 1)Ωb0,N−2(t)ei[ωt− ωt

N−1 +U1(N−3) sin(ωt)/ω],
iḃ0,N(t) = −√

NΩb0,N−1(t)ei[ωt+U1(N−1) sin(ωt)/ω]

− √
NΩb1,N−1(t)ei[U1(N−1) sin(ωt)/ω],

iḃ1,N−1(t) = −√
NΩb0,N(t)e−i[U1(N−1) sin(ωt)/ω]

− √
N − 1Ωb1,N−2(t)ei[ωt− ωt

2(N−1)
+U1(N−2) sin(ωt)/ω]

− √
2(N − 1)Ωb2,N−2(t)e−i[ ωt

N−1 −U1(N−3) sin(ωt)/ω],
(2)

where only three coupled equations are presented, in which 
the probability-amplitude functions b0,N−1(t), b0,N (t), b1,N−1(t), 
b0,N−2(t), b1,N−2(t) and b2,N−2(t) correspond to states |0, N −1, 1〉, 
|0, N, 0〉, |1, N − 1, 0〉, |0, N − 2, 2〉, |1, N − 2, 1〉 and |2, N − 2, 0〉, 
respectively. By using Fourier expansion exp[±i(nωt +x sin(ωt))] =
Σ∞

n′=−∞Jn′(x) exp[±i(n + n′)ωt] with n = 0, 1 and under the high-
frequency approximation, we can neglect these rapidly oscillating 
terms of the Fourier expansion with n ± n′ �= 0. Simultaneity, these 
functions oscillating rapidly such as e−i ωt

N−1 and e−i ωt
2(N−1) in differ-

ential equations (2) can be replaced by their average value of zero 
in the short time interval 2π/ω when ω � 2(N − 1) [32]. Thus, 
in high-frequency approximation, the set of coupled equations of 
bn1,n2 (t) can be effectively truncated as

iḃ0,N−1(t) = − J1b0,N(t),

iḃ0,N(t) = − J1b0,N−1(t) − J2b1,N−1(t),

iḃ1,N−1(t) = − J2b0,N(t). (3)

In Eq. (3), the effective couplings are given as J1 = √
NΩJ−1 ×

[(N − 1)U1/ω] and J2 = √
NΩJ0[(N − 1)U1/ω] with Jn(x) be-

ing the n-order Bessel function of x. Here the effective couplings 
depend on the modulating parameters, number of atom. And 
the zeroth- and first-order Bessel functions emerge in the effec-
tive couplings resulting from appropriate bias ε0 and interaction 
U0. The different order Bessel function will result in asymmet-
ric tunneling dynamics in the subspace spanned by Fock states 
{|0, N − 1, 1〉, |0, N, 0〉, |1, N − 1, 0〉} when initial state is prepared 
in this subspace.

Setting bn1,n2 = Bn1,n2 e−irt with Bn1,n2 and r being constants 
and inserting such a form of bn1,n2 into Eq. (3), the constant r

can be obtained as r1 = 0, r2,3 = ±
√

J 2
1 + J 2

2 . It is well-known 
that a quantum state of periodically driven system can be de-
scribed by Ψ (t) = φ(t)e−iEt based on the Floquet theorem [33], 
in which the Floquet state φ(t + T ) = φ(t) with T and E be-
ing the period of Eq. (1) and Floquet quasienergies, respectively. 
Based on the transformation relation between functions an1,n2 (t)
and bn1,n2 (t) and the expression bn1,n2 = Bn1,n2 e−irt , the Floquet 

energies can be constructed as E1 = k, E2,3 = ±
√

J 2
1 + J 2

2 + k with 
0 ≤ k = (N/4 − m)ω < ω and m = 0, 1, 2, . . . . The constant Bn1,n2

can be obtained easily from Eq. (3) and the corresponding Floquet 
states φ(t) are constructed as

φ1(t) = 1√
J 2

1 + J 2
2

× [− J2e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt |0, N − 1,1〉
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