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In this paper we provide a formal derivation of both the Camassa–Holm equation and the fractional 
Camassa–Holm equation for the propagation of small-but-finite amplitude long waves in a nonlocally 
and nonlinearly elastic medium. We first show that the equation of motion for the nonlocally and 
nonlinearly elastic medium reduces to the improved Boussinesq equation for a particular choice of the 
kernel function appearing in the integral-type constitutive relation. We then derive the Camassa–Holm 
equation from the improved Boussinesq equation using an asymptotic expansion valid as nonlinearity 
and dispersion parameters that tend to zero independently. Our approach follows mainly the standard 
techniques used widely in the literature to derive the Camassa–Holm equation for shallow-water waves. 
The case where the Fourier transform of the kernel function has fractional powers is also considered and 
the fractional Camassa–Holm equation is derived using the asymptotic expansion technique.

© 2015 Published by Elsevier B.V.

1. Introduction

In the present paper we show that, in the long wave limit, 
small-but-finite waves propagating in a one-dimensional medium 
made of nonlocally and nonlinearly elastic material satisfy the 
Camassa–Holm (CH) equation [1] and the fractional CH equation 
(see Eq. (4.10)) when a proper balance between dispersion and 
nonlinearity exists.

The CH equation

vτ + κ1 vζ + 3v vζ − vζζτ = κ2(2vζ vζζ + v vζζζ ), (1.1)

was derived for the propagation of unidirectional small-amplitude 
shallow-water waves [1–6] when the nonlinear effects are stronger 
than the dispersive effects. Due to the fact that, even for smooth 
initial data, the solution of the CH equation stays bounded as 
its slope becomes unbounded, it is often used as an appropri-
ate model capturing the essential features of wave-breaking of 
shallow-water waves [7]. However, recalling that (1.1) is derived 
under the long wavelength assumption, it follows that the CH 
equation is valid only when the solutions and their derivatives 
remain bounded [5]. For a discussion on a different criterion for 
wave-breaking in long wave models we refer the reader to [8]. It 
is interesting to note that the CH equation as a model for wave-
breaking of water waves is an infinite-dimensional completely in-
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tegrable Hamiltonian system [9,10]. Another interesting property of 
the CH equation is the existence of the so-called peakon solitary 
wave solutions when κ1 = 0 [1]. At this point, it is worth point-
ing out that the derivation in the present study is also based on 
the long wavelength assumption and that κ1 is nonzero for the 
resulting equation. In addition to the studies about water waves, 
there are also studies that derive the CH equation as an appro-
priate model equation for nonlinear dispersive elastic waves. We 
refer the reader to [11] for the derivation of a CH-type equation 
governing the propagation of long waves in a compressible hyper-
elastic rod, and to [12] for the derivation of a two-dimensional 
CH-type equation governing the propagation of long waves in a 
compressible hyperelastic plate. However, these studies relied only 
on the “geometrical” dispersion resulting from the existence of the 
boundaries, that is, from the existence of a bounded elastic solid, 
like a rod or a plate. Another type of dispersion for elastic waves 
is the “physical” dispersion produced by the internal structure of 
the medium. Therefore, one interesting question is to investigate 
whether the CH equation can be derived as an asymptotic ap-
proximation for physically dispersive nonlinear elastic waves in 
the absence of the geometrical dispersion. In this study, we con-
sider the one-dimensional wave propagation in an infinite, nonlin-
early and nonlocally elastic medium whose constitutive behavior 
is described by a convolution integral. We then show that, for an 
exponential-type kernel function, the CH equation can model the 
propagation of elastic waves even in the absence of the geometri-
cal dispersion. Furthermore, by considering a fractional-type kernel 
function we are able to derive a fractional-type CH equation, which 
indicates the possibility of obtaining more general evolution equa-
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tions for suitable kernel functions. It is well known that the KdV 
and BBM equations are valid at the same level of approximation 
while the CH equation is more accurate than the KdV and BBM 
equations. Therefore, when we neglect the highest order terms in 
the asymptotic expansion, the KdV and BBM equations and their 
fractional generalizations are also obtained as a by-product of the 
present derivation. We underline that the asymptotic derivation 
of the CH equation needs a double asymptotic expansion in two 
small parameters characterizing nonlinear and dispersive effects. 
However, assuming simply that the two parameters are equal, the 
asymptotic derivations of the KdV and BBM equations can also be 
based on a single asymptotic expansion in one small parameter re-
sulting from the balance of nonlinear and dispersive effects.

The paper is organized as follows. Section 2 presents the gov-
erning equations of one-dimensional nonlocal nonlinear elasticity 
theory and gives the equation of motion in dimensionless quanti-
ties for various forms of the kernel function. In Section 3, using 
a multiple scale asymptotic expansion, the CH equation is de-
rived from the improved Boussinesq (IBq) equation which is the 
equation of motion for the exponential kernel function. Section 4
presents the derivation of a fractional CH equation from the equa-
tion of motion corresponding to a fractional-type kernel function.

2. A one-dimensional nonlinear theory of nonlocal elasticity

We consider a one-dimensional, infinite, homogeneous, elastic 
medium with a nonlinear and nonlocal stress–strain relation (see 
[13–15] and the references cited therein for a more detailed dis-
cussion of the nonlocal model). In the absence of body forces the 
equation of motion is

ρ0utt = (
S(u X )

)
X , (2.1)

where the scalar function u(X, t) represents the displacement of a 
reference point X at time t , ρ0 is the mass density of the medium, 
S = S(u X ) is the stress and the subscripts denote partial deriva-
tives. In contrast with classical elasticity, we take the constitutive 
equation for the stress S as a general nonlinear and nonlocal func-
tion of the strain u X . That is, we assume that the stress at a 
reference point is a nonlinear function of the strain at all points 
in the body. As in [14,15], the constitutive equation of the present 
model has the form

S(X, t) =
∫
R

α
(|X − Y |)σ(Y , t)dY ,

σ (X, t) = W ′(u X (X, t)
)

(2.2)

where σ is the classical (local) stress, W is the strain-energy den-
sity function, Y denotes a generic point of the medium, α is a 
kernel function to be specified below, and the symbol ′ denotes 
differentiation. The kernel α acts as a weight function that de-
termines the relative contribution of the local stress σ(Y , t) at a 
point Y in a neighborhood of X to the nonlocal stress S(X, t). 
So, when the kernel becomes the Dirac delta function, the clas-
sical constitutive relation of a hyperelastic material is recovered. 
Assuming the reference configuration is a stress-free undistorted 
state, we require that W (0) = W ′(0) = 0. We point out that if we 
take W (u X ) = (λ +2μ)(u X )2/2 where λ and μ are Lame constants, 
the above equations reduce to those of the linear theory of one-
dimensional nonlocal elasticity (see [13]).

Without loss of generality, for convenience, the strain-energy 
density function may be considered to consist of a quadratic part 
(u X )2/2 and a non-quadratic part G(u X ) with G(0) = G ′(0) = 0:

W (u X ) = γ

[
1

2
(u X )2 + G(u X )

]
,

where γ is a constant with the dimension of stress. Differentiating 
both sides of (2.1) with respect to X and using (2.2) we obtain the 
equation of motion for the strain:

ρ0u Xtt = γ

{∫
R

α
(|X − Y |)[u X + g(u X )

]
dY

}
XX

, (2.3)

where g(s) = G ′(s) with g(0) = 0. Now we define the dimension-
less independent variables

x = X

l
, η = t

l

√
γ

ρ0

where l is a characteristic length and from now on, and for sim-
plicity, we use u for u X and t for η. Thus, (2.3) takes the form

utt = (
β ∗ (

u + g(u)
))

xx, (2.4)

where the convolution operator ∗ is defined by

β ∗ v =
∫
R

β(x − y)v(y)dy

and β(x) = lα(|x|). From a wave propagation point of view, the 
harmonic wave solutions to the linearized form of (2.4) are dis-
persive and the sole source of dispersion in the present model 
is the internal structure of the medium but not the existence of 
the boundaries. In general the kernel function β is even, nonneg-
ative and monotonically decreasing for x > 0 (we refer the reader 
to [13] for the properties that an admissible kernel function must 
satisfy). A list of the most commonly used kernel functions is 
given in [15]. Here we consider two kernel functions: the expo-
nential kernel [16] which is the most widely used kernel function 
in the engineering applications of nonlocal elasticity [13,17], and a 
fractional-type kernel function. These two kernels are chosen be-
cause they are the simplest representatives of the kernels that are 
convenient for asymptotic expansions. Moreover, as discussed in 
Remark 4.2, starting from (2.4) with a general kernel satisfying 
some mild assumptions will lead to the same results with those 
of the two representative kernels.

The exponential kernel is given by β(x) = 1
2 e−|x| . The Fourier 

transform of β is β̂(ξ) = (1 + ξ2)−1 where ξ is the Fourier vari-
able. Note that β(x) is the Green’s function for the operator 1 − D2

x
where Dx represents the partial derivative with respect to x. Now, 
using the convolution theorem stating that the Fourier transform 
of the convolution of two functions is the product of their Fourier 
transforms, we take the Fourier transform of both sides of (2.4). 
Then, substituting β̂(ξ) of the exponential kernel into the result-
ing equation and taking the inverse Fourier transform, we obtain 
the equation of motion corresponding to the exponential kernel. 
Thus, for the exponential kernel, the equation of motion, (2.4), re-
duces to the IBq equation

utt − uxx − uxxtt = (
g(u)

)
xx. (2.5)

We next consider a fractional-type kernel function whose Fourier 
transform is β̂(ξ) = (1 + (ξ2)ν)−1 where ν may not be an integer. 
Note that the previous case corresponds to ν = 1. To ensure the 
local well-posedness of the Cauchy initial-value problem defined 
for the resulting form of the equation of motion [15], we impose 
the condition ν ≥ 1. Noting that β(x) is the Green’s function for 
the operator 1 + (−D2

x)
ν , this time the equation of motion, (2.4), 

becomes an improved Boussinesq equation of fractional type

utt − uxx + (−D2
x

)ν
utt = (

g(u)
)

xx. (2.6)

Here the operator (−D2
x)

ν is defined as (−D2
x)

νq = F−1(|ξ |2νFq)

where F and F−1 denote the Fourier transform and its inverse, 
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