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The flow of a thin film down a vertical cold thick wall with finite thermal conductivity is investigated 
under the lubrication approximation. It is shown that, despite the cooling from the wall, it is possible 
to find a new flow instability. That is, the free surface response to the wall deformation increases 
its amplitude with the negative Marangoni number. This amplitude growth is independent from the 
evolution of the time-dependent perturbations imposed on the free surface which, in contrast, are 
stabilized by cooling from the wall. However it is demonstrated that, even in this case, spatial resonance 
(see Dávalos-Orozco, 2007, 2008) is more effective to stabilize the time-dependent perturbations. From 
the results it is evident that these effects are possible only when the magnitudes of the thicknesses ratio 
and the thermal conductivities ratio are small.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In real world applications, like surface coating and cooling, the 
thin liquid films are laid on walls with finite thickness and thermal 
conductivities. Therefore the recent interest in the investigation of 
the stability of these films under flow. The motivation for taking 
different thermal and mechanical wall conditions varies according 
to the goal of the problem.

Oron et al. [1] investigate evaporative instabilities of thin films. 
They need to introduce the thickness of the wall to eliminate sin-
gularities at the rupture point. Kabova et al. [2] include the thick-
ness of the wall in order to introduce a wall surface topography 
which is related to experimental settings. Gambaryan-Roisman [3]
investigates the stability of a thin film on a wall with non-uniform 
thermal conductivity. The results are obtained proposing a rela-
tion between this non-uniformity and the thickness of the wall. 
Gambaryan-Roisman and Stephan [4] investigate the effect of lon-
gitudinal topography of a thick wall in the formation of rivulets. 
They include the Lennard-Jones potential in their calculations.

The above mentioned papers motivated a systematic numerical 
calculation on the nonlinear instability of a thin film flowing down 
a heated thick wall [5]. In that paper, it is found that the ther-
mal instability is governed by the Marangoni number Ma, the Biot 
number at the interface of the liquid and the atmosphere (at the 
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free surface) and by d and Q C . Here, d is the thicknesses ratio of 
the wall over that of the liquid film and Q C is the thermal con-
ductivities ratio of the wall over that of the liquid film. These two 
parameters only appear forming the ratio d/Q C under the lubri-
cation approximation [6–8] (for a recent review see [9]). The ratio 
d/Q C appears in the denominator of the thermocapillary term and 
consequently its growth has an important stabilizing effect.

The flow down a sinusoidal wall has been investigated un-
der the lubrication approximation by Dávalos-Orozco [10,11]. It is 
shown that by means of spatial resonance it is possible to stabilize 
the time-dependent perturbation, even when the fluid is viscoelas-
tic [12]. These particular wall deformations may work as a filter 
for the perturbations in a finite region of the wall [11] (see a re-
view in [9]). At resonance the wavelength of the wall deformation 
approaches to that of the time-dependent perturbations and the 
amplitude of the free surface response increases lowering its valley. 
Therefore, near to the valley the film is very thin and hence has a 
local stabilizing effect from which the time-dependent perturba-
tions are not able to recover [10]. The instability of a film flow-
ing down a heated wavy wall was investigated by D’Alessio et al. 
[13]. Notice that nonlinear results of a Benney type equation un-
der the lubrication approximation are presented in Dávalos-Orozco 
[9]. It is demonstrated that it is still possible to stabilize the time-
dependent perturbations by means of spatial resonance when the 
wall is an ideal very good conductor.

This last problem has been extended to the case of a heated 
thick wavy wall with finite thermal conductivity [14]. A nonlinear 
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Nomenclature

A air jet maximum time-dependent pressure
a air jet time-dependent pressure dispersion
B wall deformation amplitude
Bi Biot number
c phase velocity
d dwall/h0
dwall wall thickness
h(x, y, t) film local thickness
H(x, y, t) film local perturbation
h0 unperturbed film thickness
Hh heat transfer coefficient
k wavenumber
k f fluid heat conductivity
kwall wall heat conductivity
L wall wavelength over perturbations wavelength ratio
Ma Marangoni number
P p surface external pressure
Pr Prandtl number
Q c = kwall/k f wall over fluid conductivities ratio
R Reynolds number
S scaled surface tension number
T fluid temperature
Tambient ambient atmosphere temperature

T L wall lower face temperature
Twall wall temperature
T0 zeroth order fluid temperature
u velocity x-component
v velocity y-component
w velocity z-component
x non-dimensional x coordinate
y non-dimensional y coordinate
z non-dimensional z coordinate
z∗ dimensional z coordinate

Greek

β wall inclination angle
� means difference
ε wave slope smallness parameter
ζ wall deformation
κ thermal diffusivity
λ wavelength
ν kinematic viscosity
ρ fluid density
σ surface tension
Σ surface tension number
ω frequency of oscillation

evolution equation of the Benney type is calculated which includes 
in the denominator of the thermocapillary term an extra spatial 
variation due to the waviness of the wall. A bump in the free sur-
face response is found near to the valley (the thinnest part) of the 
wall deformation producing a reduction in the amplitude.

In this paper it will be demonstrated that, when cooling from 
the wall and the Marangoni number is negative, it is possible to 
destabilize the thin film free surface response to the wall defor-
mation. The paper is organized as follows. In the next section a 
brief presentation of the physics of the problem is given along with 
the evolution equation of the thin film obtained from the basic 
equations of motion and heat transfer. In Section 3, the numeri-
cal results of the evolution equation are exposed graphically and 
explained in detail. The last section are the conclusions.

2. Thermocapillary flow of a thin film down a cooled wavy thick 
wall

The system under investigation is a thin film flowing down a 
cooled wall which has finite thickness and thermal conductivity. 
The system is sketched in Fig. 1 in non-dimensional form. There, 
the coordinate system is defined in relation with a flat surface 
which represents the mean of the wavy deformed wall. Therefore, 
the x-direction corresponds to the direction of the main velocity 
of the film. This is perpendicular to the z-direction crossing the 
film thickness and pointing outwards the fluid film. Assuming a 
right-handed system, the y-direction is perpendicular to these two. 
It is assumed that the temperature of the lower face of the wall is 
T L and it is located at z∗ = −dwall (the star means dimensional), 
where dwall is the thickness of the wall. The thickness of the film 
is h0. It is assumed that the ambient atmosphere above the free 
surface has a temperature Tambient > T L .

A smallness parameter ε = 2πh0/λ � 1 is used for the asymp-
totic expansion of the variables. λ is a representative long wave-
length of the perturbations which means that the slope of the free 
surface deformation is small.

The variables are made non-dimensional by means of h0 for 
distance in the z-direction, λ/2π for distance in the x- and 

Fig. 1. The thin film and cooled wall assumed vertical. The mean non-dimensional 
wall thickness is d = 0.11. 1) Wall sinusoidal deformation (solid), 2) Mean height 
of the wall (dashed), 3) Lower side of the wall located at z = −0.11 (dashed) with 
non-dimensional temperature 1, lower than that of the atmosphere above the free 
surface. 4) Free surface response to the wall deformation, 5) Mean height of the 
unperturbed free surface (dotted), 6) Time-dependent perturbations excited at x = 0
and running on the free surface response. They have a local height h(x, t) with 
respect to the wall deformation. The largest and smallest thickness of the wall are 
0.21 and 0.01, respectively.

y-directions, h0λ/(ν2π) for time, ν/h0 for velocity, ρν2/h2
0 for 

pressure and �T = (T L − Tambient) < 0 for temperature. The kine-
matic viscosity and the density are ν and ρ , respectively.

In non-dimensional form the free surface is assumed to be 
located at z = ζ(x, y) + 1 before the application of a perturba-
tion, where ζ(x, y) is the wall deformation. When the surface 
is perturbed the location is set as z = ζ(x, y) + h(x, y, t) where 
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