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In this paper, using Kronig–Penney model, the electronic states in graphene-based superlattices with 
various substrates and considering exact electron Fermi velocity values are investigated. The analysis 
of our results clearly indicates that the difference between Fermi velocity values of gaped and gapless 
graphene regions determines the patency rate of band gap. Also, using transfer matrix method (TMM) 
the absorbance spectrum of mentioned structures is calculated. The more important result is that the 
absorbance of these structures is significantly near zero.

© 2015 Elsevier B.V. All rights reserved.

Graphene, a two-dimensional material with a monolayer honey-
comb lattice of carbon atoms, displays very interesting properties. 
In this perfect two-dimensional system, electrons have a linear re-
lation between energy and momentum, so its band structure has 
no energy gap. As a consequence, Dirac electrons become massless, 
and thus behave like massless relativistic particles [1] and lead the 
observation of a number of very interesting electronic properties 
such as the chiral behavior, the quantum Hall effect [2,3], am-
bipolar electric field effect [4] and transport via relativistic Dirac 
fermions [5], frequency-dependent conductivity [6] and so on.

Besides, graphene exhibits unique electrical [7], mechanical [8,
9] and chemical [10,11] properties. These features suggest that 
graphene could replace other materials in existing applications. 
Hence, the fabrication of graphene-based optoelectronic devices is 
of interest and significance from scientific and engineering view-
points. However, problems associated with absence of a band gap, 
which basically means that graphene electrical conductivity cannot 
be switched off completely, is one of the main obstacles to using 
this material in device applications.

Therefore, the challenge for device developers is to create 
an improved version of graphene that has a band gap. Several 
schemes have been explored – such as applying an electric field, 
adding chemical impurities or modifying the structure of graphene. 
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On the other hand, as has been shown, the gap can be induced by 
substrate or strain engineering as well as by deposition or adsorp-
tion of molecules on a graphene layer [12]. Generally speaking, for 
manipulating the electronic structure of materials, semiconducting 
and metallic superlattice structures are now commonly used [13]. 
Recently, the interest of researchers was concentrated on the study 
of graphene-based superlattices (SLs) [14–20]. In this field, the in-
vestigations have been done for electron behaviors in graphene 
superlattices (GSLs), associated with different types of periodic po-
tential: Kronig–Penney [21–23], muffin-tin [24,25], and cosine [26].

As has been shown, the most reasonable and simple model of 
the superlattice on the base of graphene is substrate engineer-
ing. For example, in [27] the model superlattice on the base of 
graphene placed on the substrate, consisted of periodically inter-
changed strips of different dielectrics, is investigated. As we know, 
the interaction between graphene and the substrate may lead en-
ergy band gap opening in the graphene energy spectrum. In the 
spectrums of graphene on silicon carbide substrate and graphene 
on hexagonal boron nitride there are an energy gap about 0.26 eV 
[28] and 53 meV, respectively [29]. On the other hand, graphene 
placed on the quartz substrate doesn’t have the band gap in its 
energy spectrum [27]. The alternation of strips of gap and gapless 
modification of this material creates a set of potential barriers for 
charge carriers.

In this study, the graphene superlattices are formed by period-
ically altering strips. These strips include quartz (i.e. the material 
that doesn’t have effect on the graphene band structure) and h-BN
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Fig. 1. Graphene layer on the striped substrate composed of quartz and hexagonal 
boron nitride.

or SiC (i.e. materials that have significant effect on the graphene 
band structure).

Despite other work that they neglect the effect of Fermi velocity 
on electronic band structures, by supposing same Fermi velocities 
in both graphene fractions [30,31], in our model, for more de-
tailed investigation, the exact Fermi velocity amounts of graphene 
on each substrate are considered.

The outline of this paper is the following. In Section 2, based 
on Kronig–Penney model and transfer matrix method (TMM), and 
by regarding exact Fermi velocities for graphene on each substrate 
and using two component bases, the electronic band structures of 
two different graphene superlattices and also the transmittance, 
reflectance and absorbance of these structures are investigated. Fi-
nally, in Section 3, our conclusion is summarized.

We consider a one-dimensional graphene superlattice with pe-
riod of “L” that in which the gap and band shift are only position-
dependent. Such structures can be obtained, e.g., on the base of 
graphene deposited on a strip substrate combined from quartz and 
h-BN or quartz and SiC (see Fig. 1).

The Kronig–Penney model is applied for investigation of graph-
ene superlattices performance. In the vicinity of the K point of 
the Brillouin zone, the superlattice electronic structure can be de-
scribed by the Dirac-like equation:

Ĥψ(x, y) = Eψ(x, y) (1)

H is the Hamiltonian operator and defined as below,

Ĥ = v f (x)P̂σ̂ + V (x) Î + Δ(x)σ̂z (2)

Here, σ = (σx, σy) and σz are the Pauli matrices, and P =
(px, p y) = (−ih̄ ∂

∂x , −ih̄ ∂
∂ y ) is the momentum operator. In our 

study, the potential V defines the shift of the forbidden band cen-
ter in the gapped graphene with respect to the Dirac point in the 
gapless graphene [27,32] (see Fig. 1). Besides, the half-width of 
the band gap have periodically modulated by Δ. Generally speak-
ing, we have

For 0 ≤ x < a: Δ(x) = Δ and V (x) = V . (3)

For a ≤ x < l: Δ(x) = V (x) = 0. (4)

As it mentioned in [33], the Fermi velocity is one of the key 
concepts in the study of a material and it bears information on 
a variety of fundamental properties. Due to the graphene lattice 
structure and its Fermi energy position, the low-energy electronic 
excitations of this material are described by an effective field the-
ory that is Lorentz invariant [34]. Lorentz invariant theories are 
characterized by an effective velocity. Because of this, an increase 
of electron–electron interactions induces an increase of the Fermi 
velocity. In this paper, we follow the trend of [33] to control 
electron–electron interactions and the Fermi velocity of graphene 
using dielectrics. Hence, based on the results of [33], it is obvious 

Table 1
Fermi velocity (v f ) and dielectric constant (ε) of graphene on each substrate.

Substrate v f (×106) m/s ε

SiC 1.15 ± 0.02 7.26 ± 0.02
h-BN 1.49 ± 0.08 4.22 ± 0.01
Quartz 2.49 ± 0.30 1.80 ± 0.02

that the Fermi velocity can differ in graphene modification placed 
on different substrates.

Despite other work that they neglect the dependence v f on ‘x’ 
supposing same v f in both graphene fractions [31], in our model, 
to obtain exact results, we consider the dependence of v f on ‘x’. 
For this purpose we use the Fermi velocity as listed in Table 1 [33].

Because of the translation invariance in the y direction, we ex-
pect that wavefunction satisfies the following equation,

ψ(x, y) = eiky yψ(x) (5)

The above Hamiltonian acts on smooth envelope functions for 
two triangular sublattices in monolayer graphene. Therefore, from 
Eq. (1), we obtain

i
∂ψA(x)

∂x
− ikyψA(x) = V (x) − E − Δ(x)

h̄v f (x)
ψB(x) (6)

i
∂ψB(x)

∂x
+ ikyψB(x) = V (x) − E + Δ(x)

h̄v f (x)
ψA(x) (7)

Eqs. (6) and (7), yield

i
dψ

dx
= ĥ(x)ψ(x) (8)

where ĥ(x) is defined as below

ĥ(x) =
(

iky
V (x)−E−Δ(x)

h̄v f (x)

V (x)−E+Δ(x)
h̄v f (x) −iky

)
(9)

The simple solution of this equation can be

ψ(x) = exp
[−i(x − x0)ĥ

]
ψ(x0) (10)

Here, it is assumed that x, x0 belong to the space-homogeneous 
region.

The wavefunction of this superlattice structure is a Bloch func-
tion and using its transfer matrix, it is possible to obtain an ex-
pression for the dispersion relation

cos(kl) = cos
(
(l − a)Q x

)
cos(aKx)

+ E V − (h̄2 v ′
f v ′′k2

x)

Kx Q x(h̄
2 v ′

f v ′′
f )

sin
(
(l − a)Q x

)
sin(aKx) (11)

where Kx =
√

E2

(h̄v ′
f )

2 − k2
y , Q x =

√
(V −E)2−Δ2

(h̄v ′′
f )

2 − k2
y and kx =√

E2

h̄2 v ′
f v ′′

f

− k2
y .

A similar equation for the allowed energies was obtained also 
in [31] via neglecting the dependence v f on x supposing same v f
in both graphene fractions.

The dispersion relation (Eq. (11)) shows that simultaneous vari-
ation of E → −E and V → −V doesn’t have any effect on this 
equation. So, we only investigate the effects of positive relative 
band shift V . Simulation results show that the miniband structures 
have strong dependence on the system parameters.

The numerical calculations of energy dependence on k were 
performed for three values V = 0, 26.8 and 43.2 meV at Δ =
29.5 meV, ky = 0, L = 80 nm and a = L/2 (see Fig. 2). It can be 
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