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We investigate ballistic transport phenomena through a region containing a cavity in a quasi-one-
dimensional quantum wire. Conductance curve calculated as a function of a structure parameter shows 
very narrow periodic dips, which are due to anti-resonances. The nature of the virtual bound state 
appearing around the cavity is studied in detail. Transport phenomena through a small dilute magnetic 
semiconductor are also investigated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The development of the semiconductor microprocessing tech-
nology has made it possible to fabricate two-dimensional ballistic 
quantum systems, in which the scattering of electrons by disor-
ders can be eliminated. In these systems, the quantum mechan-
ical nature of electrons plays an essential role, since the dimen-
sion of the system is comparable to the wavelength of electrons. 
The sample structures and the positions of artificial impurities 
are important for the quantum interference effects on transport 
phenomena in this regime [1,2], because of very few scattering 
of electrons by artificial disorders. Recently, various sample struc-
tures such as bent [3], kinked, stubbed [4] and superlatticed nano-
wires [5], the sample structures of which had been experimen-
tally synthesized, were studied numerically using the recursive 
Green’s function method and the Landauer–Büttiker formula [6,7]
by Wang et al. [8]. They calculated ballistic conductances and See-
beck coefficients in order to evaluate the dimensionless figure of 
merit (ZT), i.e., ZT = G S2T /κ , with G being the electrical conduc-
tance, S the Seebeck coefficient, T the absolute temperature, and 
κ the thermal conductance. The value ZT characterizes the energy 
conversion efficiency of solid-state thermoelectric (TE) materials. 
Wang et al. indicated that the value of the conductance and the 
Seebeck coefficient were controlled by the structure parameters 
such as bend angle, inter-bend length, stub height and potential 
barrier height [8]. Zhou and Yang also studied the ballistic TE 
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transport properties of double-bend quantum wires in the ballistic 
regime [9]. They showed that the geometric confinement induced 
quantum interference effects, which resulted in a large Seebeck co-
efficient, and that the geometry-controlled ballistic TE effect could 
be potentially explored to design TE devices such as thermocou-
ples at nanoscale [9]. Moreover, ballistic TE properties in double-
bend graphene nanoribbons (GNRs) were investigated using the 
nonequilibrium Green’s function by Li et al. [10]. They suggested 
that the maximum value of ZT (ZTmax) was able to be controlled 
by modulating the length or width of double-bend GNRs [10].

So far, we have studied the quantum interference effects on the 
transport in the linear response regime, making use of the modal 
expansion [11], the Lippmann–Schwinger equation [12–15], and 
the transfer matrix methods [16] for various sample structures. In 
those works, we reported the results of investigation for the inter-
ference effects in quantum wires including disk-shaped obstacles 
with negative potentials [13], a ring-shaped barrier with a positive 
potential [15] in magnetic fields, and so forth [14,16].

In this Letter, we demonstrate the results of our examination 
of the interference effects on the transport properties through a 
quantum wire containing a single cavity. We show the conductance 
as a function of the size of cavity using the Landauer Formula 
with the calculated transmission matrix. We consider the quan-
tum wire including the cavity in terms of an abrupt narrow–wide 
(NW) and wide–narrow (WN) junctions confined by infinite po-
tential barriers without screening potentials. The results calculated 
show sharp dips (very narrow gaps) in the conductance, which 
are due to the resonant reflections (anti-resonances) by the virtual 
bound states around the cavity. These resonant reflections were 
also reported in various geometries of normal conductor [8–10,17]
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Fig. 1. Schematic figure of the system. Yn and Yw denote the widths of the region 
(0 > x, L < x) and 0 < x < L, respectively.

and the geometries of normal conductor–superconductor compos-
ite systems [16]. In this work, we have payed attention to the 
variation of the interference effects as changing geometry, and 
therefore, we have calculated the conductance as a function of 
the size of cavity instead of the Fermi energy. We have also in-
vestigated the transport phenomena in the case where the cavity 
consisted of a small dilute magnetic semiconductor. Realizing fer-
romagnetic interactions in dilute magnetic semiconductor quantum 
dots is an important subject to the development of next-generation 
spin-based information technologies [18].

2. Model and method

To examine the conductance in the quasi-one-dimensional case, 
we have employed the modal expansion method. In the system 
considered, only two junctions (i.e., the NW and WN junctions) 
are included, and hence, this method is advantageous for the cal-
culation of the scattering matrix. We consider a quantum wire, 
which is assumed to be infinitely long in the x-direction, but to 
be finite in the y-direction as illustrated in Fig. 1. In this case, 
along the x-direction, the system consists of three parts; a semi-
infinite lead for −∞ < x < 0, a finite central region (i.e., cavity) 
for 0 < x < L, and a semi-infinite lead for L < x < +∞. The wave 
function ψ�(x, y) for the �th mode is described as

ψ�(x, y) =
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with Y being the width of the wire. The quantities Yn and Yw
denote the widths of the wire for the regions (0 > x, L < x) and 
0 < x < L, respectively. We use the condition Yn ≤ Yw in the fol-
lowing calculation. The value � and the wave vector k are related 
to the Fermi Energy EF by the dispersion relation

EF = h2k2
�

8π2m∗ + h2

8m∗

(
�

Y

)2

, (3)

where m∗ is the effective mass of conduction band in GaAs. Each 
junction is divided into N regions uniformly along the y-direction. 
Evanescent modes are also included in transmitted and reflected 
waves. The coefficients Rml , R ′

ml , Tml , and T ′
ml are calculated by the 

imposition of the continuity of the wave function and its derivative 
at x = 0 and x = L, using the technique described in Ref. [11]. We 

Fig. 2. Conductance plotted as a function of L.

Fig. 3. Transmission coefficient T ′ plotted as a function of L.

can evaluate the transmission amplitudes from the normalization 
of the velocity to obtain the conductance G as

G = (
2e2/h

)∑
m�

km

k�

|Tm�|2. (4)

3. Numerical results and discussion

Now, we discuss the transport phenomena through the cavity 
(wide region). We have calculated the conductance numerically as 
a function of length L of the cavity, instead of changing Fermi en-
ergy, in order to clarify the geometrical effects on the transport. 
The parameters used in the following calculation are chosen to be 
EF = 0.14 eV, N = 80, Yn = 10 nm, and Yw = 20 nm. Fig. 2 shows 
the conductance calculated as a function of L in the case where 
the number of propagating mode of the incident wave is unity. In 
what follows, only the first mode (lowest subband in leads) for 
the incident wave is considered to simplify the discussion. As can 
be seen from Fig. 2, the conductance shows oscillating structures 
clearly by the interference effects. In Fig. 2, we also notice ex-
tremely narrow dips in the conductance curve. These narrow dips 
take place periodically with a period 19.88 nm. The conductance 
dips as a function of the Fermi energy were reported with differ-
ent calculations [8,17]. The dips occurring with increasing size L
in Fig. 2 are considered to be due to the anti-resonances by the 
local electronic states around the cavity. We also show the trans-
mission coefficient T ′ (= ∑

m�(k
′
m/k�)|T ′

m�|2) in Fig. 3. We can see 
sharp peaks at the same positions of the dips in Fig. 2. The am-
plitudes of peaks are very large compared with the transmission 
coefficient T (= G/2e2/h), the maximum of which is unity. Mul-
tiple scatterings occur at the NW and WN junctions, when the 
coefficient T ′ shows a peak value in Fig. 3, so that the value T ′
goes well beyond the number of propagating modes of the incident 
wave. Here, we show the modulus squared of the wave function in 
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