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We present a set of beams which combine the properties of accelerating beams and (conventional) 
diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately 
invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-
like beams, depending on the initial complex amplitude distribution. A possible application of these 
beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like 
beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal 
particles along a curve.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1979, Berry and Balazs [1] predicted a new family of solu-
tions to the Schrodinger equation for a free particle: Airy wave 
packets. Airy wave packets have unique propagation behaviors of 
non-diffraction and free acceleration. In 2007, Siviloglou et al. pre-
dicted theoretically [2] and demonstrated experimentally [3] finite 
energy Airy wave packets in the optics domain. These optical Airy 
wave packets, called Airy beams, exhibit the properties of quasi-
diffraction-free and free acceleration along a parabolic curve over 
a certain distance. Since then, related applications including optical 
manipulation and generation of curved plasma channel [4–6] were 
also demonstrated. In parallel, various methods are also proposed 
to generate Airy beams, such as using a spatial light modulator 
(SLM) [2,4], a continuous transparent phase mask [6], asymmet-
ric nonlinear photonic crystals [7] and surface plasmon polariton 
fabrication [8]. Usually, for an accelerating beam along a parabolic 
curve, the transverse profile of the beam is described by the Airy 
function modulated by a decay factor. However, Bandres [9] found 
that, under the condition of parabolic acceleration, the equation 
governing the transverse profile of beam allows for the separation 
of variables in the parabolic coordinate system. Thus, accelerating 
parabolic beams are also possible. The fields of such beams exhibit 
well defined parabolic nodal lines.
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Recently, beams with non-parabolic trajectories were also 
demonstrated in both paraxial regime [10,11] and non-paraxial 
regime [12–17]. With the method of stationary phase, Greenfield 
et al. [10] created one-dimensional accelerating beams along ar-
bitrary convex trajectories. The transverse profile of such beams 
is described by an Airy-like function. In the paraxial condition, 
the trajectory of an accelerating beam is limited to a small angle, 
that is, it cannot bend to large angles at which the beam is no 
longer shape preserving. To overcome this restriction, non-paraxial 
accelerating beams (NABs) have been identified theoretically and 
demonstrated experimentally. In two-dimensional case, NABs can 
be exact solutions of the Helmholtz equation (HE) in different 
cylindrical coordinate systems [14,15]. Unlike paraxial accelerat-
ing beams, which finally break down at large distance, NABs can 
travel along different planar curves beyond the paraxial limit in-
cluding circle [14], ellipse and parabola [15]. Moreover, they can 
bend themselves to a large angle close to 90◦ — perpendicular 
to the original direction of propagation. For circular accelerating 
beams, the dynamic properties of acceleration and diffraction-free 
occur simultaneously. More recently, circular accelerating beams 
were generalized to three-dimensional case in the spherical and 
(prolate) spheroidal coordinate systems [16], and the parabolic 
coordinate system [17]. Classified by the indices of some spe-
cial functions, these three-dimensional circular accelerating beams 
exhibit different transverse modes (in the azimuthal plane). For 
example, in the spherical coordinated system, the transverse mode 
is specified by the indices of the associated Legendre function. 
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In general, the transverse profile of accelerating beams shows an 
asymmetry. Recently, Chremmos et al. [18] found a set of acceler-
ating beams which exhibit a zeroth-order Bessel-like property in 
their transverse profile. This theoretical work was later proved by 
Zhao et al. [19].

In this paper, we extend the work of Chremmos et al. to beams 
that have a transverse profile resembling conventional diffraction-
free (higher-order) Bessel beams, Mathieu beams or parabolic non-
diffracting beams, depending on the initial complex amplitude dis-
tribution. We know that these three types of beams are diffraction-
free solutions in the cylindrical [20], elliptic cylindrical [21,22] and 
parabolic cylindrical [23] coordinate systems respectively, which 
preserve their shapes during propagation.

2. Theoretic consideration

The previous work of Chremmos et al. gave a set of zeroth-
order Bessel-like accelerating beams with arbitrary trajectories. The 
key point of the method used there is to find an initial field distri-
bution in the input plane Z = 0

u(x, y) = A(x, y)exp
[
i Q (x, y)

]
, (1)

whose paraxial Fresnel integral

u(X, Y , Z) = 1

i2π Z

¨
u(x, y)ei (X−x)2+(Y −y)2

2Z dxdy (2)

will give a field distribution in the region Z > 0 having a desired 
accelerating trajectory given by X = f (Z) and Y = g(Z). As in [18], 
the transverse and longitudinal coordinates are divided by X0 and 
k(X0)

2 respectively, where k is the wave number and X0 an arbi-
trary constant.

In [18], only the initial phase Q (x, y) is concerned. To avoid 
confusion, we denote by Q 0(x, y) the initial phase used there. By 
the stationary phase conditions ∂x Q 0 = 0 and ∂y Q 0 = 0 on the 
curve, and the integrable condition ∂x∂y Q 0 = ∂y∂x Q 0, Chremmos 
et al. found that the stationary phase points contributing to the 
point ( f (Z), g(Z), Z) on the accelerating curve consist of a circle 
C(Z) described by

(x − xc)
2 + (y − yc)

2 = R2, (3)

where xc = f − Z f ′ , yc = g − Z g′ with the prime denoting the 
derivative relative to Z , and R is a function of Z . Solving this equa-
tion for Z in favor of x and y, and integrating the stationary phase 
condition ∂x Q 0 = 0 or ∂y Q 0 = 0, the initial phase Q 0(x, y) is found 
to be

Q 0(x, y) = 1

2

Zˆ

0

[(
f ′)2 + (

g′)2 − (R/s)2]ds

− [
( f − x)2 + (g − y)2]/(2Z). (4)

To see that the initial phase distribution Q 0(x, y) gives a zeroth-
order Bessel-like accelerating beam, note that for a given Z , the 
field in the transverse neighborhood of the point ( f (Z), g(Z), Z) is 
mainly contributed by the circle C(Z) in the initial plane. Chrem-
mos et al. [18] showed that the rays emanated from the points on 
the circle C(Z) interferes constructively to give a field pattern as

u(δX, δY , Z) = exp
[
i P (Z)

]

×
˛

C(Z)

exp
[
i( f − x)δX + i(g − y)δY

]
dl, (5)

where P (Z) is a function of Z [18]. It is recognized that, the right-
hand side of (5) is the integral representation of a zeroth-order 

Bessel function. To yield a higher-order Bessel function, we simply 
multiply the integrand in the integral in Eq. (5) by a modulation 
factor h(φ) = exp(imφ), which gives a Bessel function of order m. 
Furthermore, if we put h(φ) to be the eigen functions appearing 
in the integral representation of Mathieu beams or parabolic non-
diffracting beams, then the field obtained from (4) will exhibit an 
elliptic or parabolic geometry. Noting that the integral in (5) is per-
formed over a certain circle C(Z), the introduction of the factor 
h(φ) is also confined to this circle, that is, its argument φ is a func-
tion of Z . Since the function h(φ) is complex valued, there results 
an additional phase Arg(h(φ)) besides Q 0(x, y) given by Eq. (4). 
Then, the final initial phase and magnitude occurring in Eq. (1) are 
Q (x, y) = Q 0(x, y) + Arg(h(φ(Z))) and A(x, y) = |h(φ(Z))|, where 
the function Z(x, y) is obtained by solving Eq. (3). We emphasize 
that by the introduction of the modulation factor h(φ), the sta-
tionary phase condition ∂x Q = 0 and ∂y Q = 0 may not hold on 
the accelerating curve, implying that the maxima of field may not 
occur on the curve. However, this is what we expect, since, for 
example, a higher-order Bessel-like (accelerating) beam must have 
a transverse profile of donut shape. As pointed out by Chremmos 
et al. [18], the accelerating beams obtained by this method exhibit 
a well-defined acceleration behavior only for Z ≤ Zm , where Zm is 
a critical value determined by Eq. (3). For Q (x, y) to be well de-
fined, as in [18], the trajectory beyond Zm is set to be a straight 
line tangent to the well defined acceleration curve at the ultimate 
point ( f (Zm), Zm).

3. Simulations and discussions

In what follows, we confine the acceleration trajectory to a 
curve in the Y = 0 plane (g = 0) and put R(Z) = Z in Eq. (3). Using 
the above method, we obtain the initial field distribution u(x, y)

and substitute it into the Fresnel integral (2) to carry out numerical 
simulations. We first give an example of the higher-order (m = 2) 
version of the zeroth-order Bessel-like beam along the parabola 
f = Z 2/40 given in Fig. 2 of [18]. As in [18], the initial amplitude 
is modulated by the Gaussian factor exp[−(x2 + y2)/900]. Not-
ing that here (x, y) and (X, Y , Z) are dimensionless coordinates 
corresponding to the actual coordinate variables (xX0, y X0) and 
(X X0, Y X0, kZ(X0)

2) with k being the wave number and X0 an ar-
bitrary constant. If X0 = 100 μm and the wavelength λ = 1 μm, an 
80 × 80 transverse region such as Fig. 1(a) would correspond to 
an actual region of 8 mm × 8 mm, while the longitudinal inter-
val [0, 30] such as Fig. 1(c) would correspond to [0, 188.4 cm]. The 
phase Q (x, y) and the magnitude A(x, y) are given in Figs. 1(a) 
and 1(b) where the magnitude A(x, y) is just the Gaussian factor. 
Compared to the phase distribution of the zeroth-order Bessel-like 
beam given in [18], the phase here shows some similarities in the 
outer region. In the central region, however, Fig. 1(a) presents a 
twisted structure, a typical property of phase vortex. This is rea-
sonable, since on each circle C(Z), a local vortex phase factor 
exp(imφ) exists. Fig. 1(c) describes the dynamics of propagation of 
the beam in the Y = 0 plane, where, as desired, a parabola tra-
jectory (dashed line) is observed. We note that the whole field 
distribution in the Y = 0 plane consists mainly of two curved 
strips located on two sides of the prescribed parabola trajectory. 
Figs. 1(d)–1(f) show the transverse profiles at Z = 5, 15 and 25, 
respectively, exhibiting the multiple circular ringed structure with 
a vanishing field at the center, the typical pattern of a higher-
order Bessel beam. This transverse profile, in combination with the 
parabola trajectory, enables us to obtain a curved donut beam in 
three-dimensional physical space. From Figs. 1(d)–1(f), we also ob-
serve that the transverse profile is approximately invariant. How-
ever, we note that the main (central) ring is not uniform. At Z = 5, 
the main ring assumes its maximum roughly at the ten clock po-
sition, while at Z = 15 and 25, they are approximately at the one 
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