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We calculate the time delay of light in the gravitational field of a slowly moving body with arbitrary 
multipoles (mass and spin multipole moments) by the Time-Transfer-Function (TTF) formalism. The 
parameters we use, first introduced by Kopeikin for a gravitational source at rest, make the integration 
of the TTF very elegant and simple. Results completely coincide with expressions from the literature. The 
results for a moving body (with constant velocity) with complete multipole-structure are new, according 
to our knowledge.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Light propagation in gravitational fields is a very important 
topic not only for modern astrometry because of the high accu-
racies achieved in modern observations, but also for other kinds 
of measurements such as radar ranging to spacecrafts or planets. 
Gravitational fields cause a propagation-time delay and a deflec-
tion of light-rays as well as a frequency shift of the involved 
photons. The first effect, called Shapiro delay [1], has to be consid-
ered in space-techniques such as Very-Long-Baseline Interferome-
try (VLBI), Lunar Laser Ranging (LLR), etc. The present VLBI model 
recommended by the IERS conventions 2010 [2] (the consensus 
model [3]) has an accuracy at the 1 picosecond level; it will be 
improved to 0.1 picosecond accuracy in the near future; LLR is ap-
proaching now the millimeter level [4]. The gravitational field of 
the Sun produces a maximum of about 100 nanoseconds for the 
Earth bounded VLBI observations [5] and 50 nanoseconds (15 me-
ters) in LLR experiments.

The light propagation delay in the gravitational field of a sta-
tionary mass-monopole is quite easy to derive. For a body with 
arbitrary mass and spin multipole moments, moving with some 
velocity in the underlying coordinate system, the treatment be-
comes non-trivial. One usually uses the null geodesic equation 
to get the light-propagation information between two events (for 
example, emission and reception). The solutions for a gravitating 
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body with arbitrary multipoles obtained in this way was first de-
rived in Refs. [6,7]. Bertone et al. showed that the so-called Time-
Transfer-Function (TTF) formalism can also be used efficiently to 
get the gravitational time-delay, but they dealt with the case of 
mass-monopoles only [8]. Recently, some authors discussed the 
light propagation in the field of a moving axisymmetric body [9].

In this Letter, we derive the TTF by means of special parameters 
and techniques that were first introduced by Kopeikin [6,7]; using 
this approach simplifies the calculations drastically. Results for the 
Shapiro-effect for a body with arbitrary mass- and spin-multipoles
are obtained in a few lines. Our results completely coincide with 
the ones from the literature (e.g., [6,7]). This calculation is then 
generalized in a very simple way to the case of a body moving 
with slow and constant velocity in the underlying coordinate sys-
tem.

In the next section, the metric of a body with arbitrary 
multipole-moments is recalled. In Sections 3 and 4, we introduce 
the TTF, and calculate the light propagation for the cases of ar-
bitrary multiple moments and constant velocity. The last section 
contains conclusions and discussions.

2. The time transfer function

We will consider the propagation of light-signals in a first order 
post-Newtonian metric of form

g00 = −1 + 2w

c2
,

g0i = − 4

c3
wi,
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gi j = δi j

(
1 + 2w

c2

)
, (1)

where w and wi are the scalar- and the vector gravitational po-
tentials respectively. Our interest is in the gravitational time delay 
that can be computed from the null condition, ds2 = 0, along the 
light-ray. Writing gμν = ημν +hμν and defining the coordinates as 
(ct, x, y, z), we get

dt2 = 1

c2
dx2 +

(
h00 + 2

c
h0i

dxi

dt
+ 1

c2
hij

dxi

dt

dx j

dt

)
dt2.

Considering |hμν | � 1, to first order Taylor expansion, the above 
equation becomes

dt ≈ |dx|
c

+ |dx|
2c

(
hμνnμnν

)
, (2)

where we have inserted dxi/dt = cni from the unperturbed light-
ray equation, x(t) = x0 + nc(t − t0) and nμ ≡ (1, n). For our metric 
(1), the Time Transfer Function (TTF), T (t0, x0; x) ≡ t − t0 with 
ds = |dx| reads

T (t0, x0; x) = R

c
+ 1

2c

s∫
s0

(
hμνnμnν

)
ds

= R

c
+ 2

c3

s∫
s0

(
w − 2

c
w · n

)
ds, (3)

where R is the Euclid distance from x0 (where a light signal is 
send at time t0) to an observer at x (the reception time is t). The 
TTF allows the computation of t if t0, x0 and x are given. In one 
word, TTF is just propagation time of light in gravitational field. 
Because t is coordinate time, the TTF as well as the time delay 
should be a coordinate-dependent quantity.

3. A single gravitating body at rest

We consider first a single body at rest at the origin of our co-
ordinate system. Space–time outside of the body is assumed to be 
stationary. Then the metric potentials outside the body take the 
form [10]

w = G
∑
l≥0

(−1)l

l! ML∂L

(
1

r

)
, (4)

wi = −G
∑
l≥1

(−1)l

l!
l

l + 1
εi jk SkL−1∂ jL−1

(
1

r

)
, (5)

where ML and SL is the mass and spin multipole moment respec-
tively. L is a Cartesian multi-index, L ≡ i1 . . . il , and each individual 
Cartesian index i j runs over 1, 2, 3 or x, y, z. Correspondingly, the 
multi-index L − 1 indicates l − 1 different Cartesian indices. And 
r ≡ (x2 + y2 + z2)1/2 is the Euclid distance from the center of mass 
to the field point. We now use the Kopeikin-parametrization of the 
unperturbed light-ray (see Kopeikin [7])

xs = d + n · s (6)

with d · n = 0, i.e. d = n × (x × n) = n × (x0 × n) is the vector 
that points from the origin to the point of closest approach of 
the unperturbed light-ray. We then have s = n · xs and rs ≡ |xs| =√

d2 + s2. Following [7] we can now split the partial derivative 
with respect to xi in the form

∂i = ∂⊥
i + ∂

‖
i (7)

with

∂⊥
i ≡ ∂

∂di
, ∂

‖
i ≡ ni ∂

∂s
. (8)

Then, from Eq. (24) in [7]:

∂L =
l∑

p=0

l!
p!(l − p)!nP ∂⊥

L−P ∂
p
s , (9)

where nP = ni1 . . .nip and ∂ p
s = ∂ p/∂sp . Inserting this into expres-

sion (3) and decomposing T as TM + TS we get

TM = 2G

c3

∞∑
l=0

l∑
p=0

(−1)l

l!
l!

p!(l − p)! MLnP ∂⊥
L−P

[
∂

p
s ln

s + r

s0 + r0

−
(

∂
p
s ln

s + r

s0 + r0

)∣∣∣∣
s=s0

]
(10)

for the time delay induced by the mass multipole moments ML

and

TS = 4G

c4

∞∑
l=1

l∑
p=0

(−1)l

l!
l!

p!(l − p)!
l

l + 1
εi jkni SkL−1nP ∂⊥

jL−P−1

×
[
∂

p
s ln

s + r

s0 + r0
−

(
∂

p
s ln

s + r

s0 + r0

)∣∣∣∣
s=s0

]
(11)

for the time delay induced by the spin multipole moments SL , 
since

s∫
s0

ds

rs
= ln

s + r

s0 + r0
. (12)

These results are in agreement with the ones found by Kopeikin 
[7].

4. The TTF for a body slowly moving with constant velocity

Let us now consider the situation where the gravitating body 
(called A) moves with a constant slow velocity vA; we will neglect 
terms of order v2

A in the following. Let us denote a canonical coor-
dinate system moving with body A, Xα = (cT , Xa) (see, e.g., [11]) 
and the corresponding metric potentials by W and W a . The metric 
tensor in the comoving system is of the form (1) with potentials 
W , W a given by Eqs. (4) and (5), but written in terms of comoving
coordinates. E.g., the quantity r in (4) and (5) has to be replaced 
by R ≡ |X |, and the spatial derivatives are now with respect to 
Xa . Under our conditions the transformation from comoving co-
ordinates Xα to xμ is a linear Lorentz-transformation of the form 
(βA ≡ vA/c):

xμ = zμ
A (T ) + Λ

μ
α Xα (13)

with zμ
A ≡ (0, zA(T )) and Λ0

0 = 1, Λ0
a = βa

A, Λi
0 = β i

A, Λi
a = δia . 

where zA is the global coordinate position vector of body A. 
A transformation of the comoving metric to the rest-system then 
yields (see also [11])

w = W + 4

c
βA · W

wi = W vi
A + W i . (14)

One can show (e.g., Zschocke and Soffel [12]) that R = rA(t) +
O(v2

A). Furthermore,

∂a = ∂

∂ Xa
= Λ

μ
a

∂

∂xμ
= δai∂i +O

(
v2

A

)
, (15)
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