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The problem of model discriminability and parameter identifiability for dephasing two-level systems 
subject to Hamiltonian control is studied. Analytic solutions of the Bloch equations are used to derive 
explicit expressions for observables as functions of time for different models. This information is used to 
give criteria for model discrimination and parameter estimation based on simple experimental paradigms.
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1. Introduction

Control of quantum dynamics by means of Hamiltonian en-
gineering is recognized as a crucial tool for the development of 
quantum technology from quantum information processing (QIP) 
applications to novel pulse sequences for magnetic resonance 
imaging (MRI) [1–3]. The effectiveness of most quantum control 
strategies is conditional on the existence of accurate models for 
control design. The derivation of such models for systems sub-
ject to both control and decoherence is therefore crucial for the 
development of effective control strategies, and techniques for sys-
tem identification based experimental data play an important role 
in finding such models. This is increasingly being realized and 
reflected by a rapidly growing body of literature in the field of 
quantum system identification [4–12].

In this Letter we specifically address the issue of distinguisha-
bility of different plausible models for dephasing two-level systems 
in the presence of a nontrivial Hamiltonian, via the time evolution 
of an observable. From qubits as building blocks for QIP [13] to 
proton spins in MRI and spectroscopy [14], two-level systems are 
ubiquitous in many areas of physics. Although, the Lindblad su-
peroperator for a two-level system in a Markovian environment 
has 15 parameters, resulting in a complex identification prob-
lem for generic relaxation dynamics, the observed relaxation phe-
nomena for many physical systems appear to be reasonably well 
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approximated by a few parameters such as transverse and longi-
tudinal relaxation rates associated with population relaxation and 
phase decoherence effects, respectively. Usually, it is assumed, of-
ten implicitly, that both population and phase relaxation occur in 
the eigenbasis of the system Hamiltonian. However, when control 
fields are applied, it is not necessarily clear which Hamiltonian ba-
sis one should use. The question therefore arises whether and how 
one can distinguish these models experimentally. Assuming that 
we can model the system as a dephasing two-level system, can we 
distinguish different cases and identify basic model parameters? 
We address this problem by deriving explicit analytic expressions 
for the time evolution of typical observables for the different mod-
els and discuss their distinguishing features.

2. Markovian master equation and Bloch equation

We study a two-level quantum system such as a spin- 1
2 par-

ticle or qubit subject to Hamiltonian control and Markovian pure 
dephasing. The state of the system can be described by a density 
operator ρ , whose evolution is governed by a Lindbladian master 
equation

∂ρ(t)

∂t
= − i

h̄
[Ĥ,ρ] +D[V ](ρ), (1)

with the usual Lindbladian dissipation superoperator

D[V ](ρ) = V ρV † − 1

2

(
V † V ρ + ρV V †) (2)
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but with unknown Hermitian operators H and V . Broadly, we are 
interested in the determination of the operators H and V given 
limited or no prior knowledge of the system, with limited control 
and measurement resources. More specifically, we will be inter-
ested in the question of how to discriminate between two types of 
probable models and identify the relevant model parameters.

We note here that while Eq. (1) is a general model to describe 
a quantum system subject to Markovian dynamics, we have a as-
sumed a special form of the dissipation superoperator appropriate 
for modelling a two-level system subject to pure dephasing, which 
can be described by an Hermitian operator V . With these assump-
tions we can, without loss of generality, choose a basis so that 
either H or V is diagonal. We shall choose a basis so that V is 
diagonal. As V is a pure dephasing process and any component 
proportional to the identity can be incorporated into the Hamil-
tonian H , we further assume that V has zero trace. Thus, V has 
eigenvalues that occur in ± pairs and we can write

V =
√

γ

2
σz, σz =

(
1 0
0 −1

)
(3)

and γ ≥ 0. Under these assumptions the dissipation super-operator 
simplifies

D[σz](ρ) = γ

2
(σzρσz − ρ). (4)

We can further expand the control Hamiltonian with respect 
to the Pauli operator basis {I, σx, σy, σz} for the 2 × 2 Hermitian 
matrices

H(t) = h̄

2

(
α I + ωz(t)σz + ωx(t)σx − ωy(t)σy

)
, (5)

where I is the identity operator and

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (6)

Terms proportional to the identity give rise only to a global phase 
and can be neglected. Similarly expanding ρ with respect to the 
standard Pauli basis

ρ = 1

2
(I + vxσx + v yσy + vzσz), (7)

we can recast Eq. (1) in the common Bloch equation formulation( v̇x(t)
v̇ y(t)
v̇ z(t)

)
=

( −γ −ωz(t) −ωy(t)
ωz(t) −γ −ωx(t)
ωy(t) ωx(t) 0

)( vx(t)
v y(t)
vz(t)

)
, (8)

where vα = Tr(ρσα) and we have assumed units are chosen such 
that h̄ = 1.

3. Model discrimination and parameter estimation problem

The general system identification problem for Eq. (8) is to find 
all model parameters ωx , ωy , ωz , and γ . This general identification 
problem may be difficult to solve, especially when the parameters 
are time-dependent. However, there are interesting special cases.

One such special case is when dephasing acts in the same ba-
sis as the Hamiltonian, i.e., H and V commute, and ωx = ωy = 0. 
This is the case that is usually assumed without justification. When 
no control is applied and H is simply a static system Hamiltonian 
H0 then this is a reasonable assumption. However, when control 
fields are applied the assumption that H and V commute may not 
be valid. Suppose we have a two-level system with H0 = 1

2 ω0σz

that is driven by a constant amplitude control field giving rise to 
a control Hamiltonian HC = f (t)σx or HC = f (t)σy , for example. 
Transforming to a rotating frame and neglecting counter-rotating 

terms, this gives an effective Hamiltonian HRWA = ωzσz + ωxσx or 
HRWA = ωzσz +ωyσy where ωz = �ω0 is the detuning of the field 
from the resonance frequency ω0 and ωx or ωy is the Rabi fre-
quency Ω of the driving field. Thus, assuming that the field does 
not affect dephasing, the effective Hamiltonian HRWA and V no 
longer commute.

From a model identification perspective, an interesting question 
is whether the control affects dephasing — for example, does V
act in the original system Hamiltonian basis, or the new effective 
Hamiltonian basis, and to determine the model parameters. The 
first question can be regarded as a model discrimination problem 
while the latter is a parameter estimation problem. Specifically, 
we are interested in whether we can discriminate the different 
cases by performing a series of simple experiments, and what 
the best experimental protocols are. Motivated by the discussion 
above, we specifically consider three different cases:

(1) ωz �= 0, ωx = ωy = 0;
(2) ωx �= 0, ωy = ωz = 0;
(3) ωy �= 0, ωx = ωz = 0,

where (a) can be regarded as the case of a two-level system with 
no driving fields applied and (b) and (c) as a two-level system res-
onantly driven by a constant amplitude field in the x-direction and 
y-direction, respectively.

4. Experimental design and assumptions

Lack of precise knowledge about the system typically precludes 
precise and sophisticated control. Therefore experimental protocols 
for system identification must be kept simple. In general mini-
mal requirements for system identification include (1) the ability 
to prepare the system in some state ρI and (2) the ability to mea-
sure some observable M to obtain information about the system. 
With regard to assumption (1) we may not know a priori what 
the state ρI is but it should be possible to repeatedly initialize the 
system in the same state by following the same preparation pro-
cedure. In this spirit we make the following assumptions.

(1) Initialization. We assume that we are able to prepare the 
system in some initial state. For simplicity we take this to be a 
pure state ρI = |ΨI (0)〉〈ΨI (0)|, where |ΨI (0)〉 takes the form∣∣ΨI (0)

〉 = cos
θI

2
|0〉 + sin

θI

2
|1〉 (9)

and {|0〉, |1〉} denotes an eigenbasis of V — although this assump-
tion will be relaxed later. In practice this preparation might corre-
spond to letting the system relax to its ground state and applying 
a short control pulse. In the absence of precise knowledge of the 
ground state, the resonance frequency of the system and the cou-
pling strength, the effective rotation angle θI may not be known 
initially and we shall see that such a priori knowledge of θI is not 
necessary. We can formally represent the initialization procedure 
by the operator Π(θI ), which is the projector onto the state |ψI 〉.

(2) Measurement. We assume the ability to perform a two-
outcome projective measurement. Without loss of generality we 
can assume the eigenvalues of the measurement operator to be 
±1 and write

M = M+ − M− = |m+〉〈m+| − |m−〉〈m−|. (10)

We shall assume that the measurement basis states |m±〉 can be 
written as

|m+〉 = cos
θM

2
|0〉 + sin

θM

2
|1〉, (11a)

|m−〉 = sin
θM

2
|0〉 − cos

θM

2
|1〉, (11b)
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