
Physics Letters A 379 (2015) 284–288

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Linear response of a pre- and post-selected system to an external field

Masashi Ban

Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 August 2014
Received in revised form 4 October 2014
Accepted 27 October 2014
Available online 2 December 2014
Communicated by P.R. Holland

Keywords:
Linear response
Strong value
Weak value
Post-selection

Linear response to an external field is studied for a quantum system with pre- and post-selection. Effects 
of an external field on strong and weak values of a system observable are found. The external field 
applied after the measurement of the observable influences the linear response of the system through 
post-selection. A time-symmetric property in the linear response is found.
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1. Introduction

A measurement process is indispensable for gaining informa-
tion on a quantum system. As a result, a measured system changes 
its state irreversibly into another one which depends on the mea-
surement outcome [1,2]. This characteristic feature of a quantum 
system is called the state reduction. A closed system to be mea-
sured is prepared in an initial state and it evolves reversibly with 
time. Quantum measurement is performed on the system at some 
time and the state reduction takes place. When the system is ir-
relevant after the measurement, the overall time evolution of the 
system is clearly asymmetric or irreversible due to the state reduc-
tion caused by the measurement. However, Aharonov, Bergmann 
and Lebowitz [3] have shown that time symmetric formulation of 
quantum mechanics is possible. In their formulation, the measured 
system evolves again with time until post-selection of the sys-
tem is performed at final time. The symmetry can be recovered if 
measurement of an observable is done between pre-selection (ini-
tialization) and post-selection. In a usual theory, only pre-selection 
is considered. When both pre-selection and post-selection are 
performed, quantum systems exhibit many interesting properties 
[4–10].

The linear response theory developed by Kubo provides a pow-
erful tool for investigating properties of a physical system [11,12]. 
It has been applied to various kinds of phenomena from solid state 
physics [12] to quantum optics [13,14]. In the linear response the-
ory, we examine how an average value of a system observable 
changes under the influence of a weak external field. The response 
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of the average value depends only on the external field applied 
during the time evolution of the system from initial time to mea-
surement time. It does not depend on the external field applied 
after the measurement is completed. However, when post-selection 
is performed on the system, it is possible that the linear response 
is influenced by the external field applied during the time evo-
lution of the system from measurement time to final time. Then 
some time-symmetric property can be expected in the linear re-
sponse.

The linear response theory is one of the most successful the-
ories in non-equilibrium statistical mechanics [11], and the sym-
metric formulation of quantum mechanics is of great importance 
in the basis of quantum mechanics [3]. Hence it is interesting 
to consider the linear response theory within the framework of 
the time-symmetric quantum mechanics. It is expected that some 
time-symmetric property can be found even in the presence of 
disturbance caused by an external field. The linear response the-
ory has been applied to the weak measurement [15]. The linear 
response of a pointer observable of a measuring device to a rele-
vant system has been considered, where a weak value of a system 
observable plays a role of the external field to the measuring de-
vice and time-symmetric property has not been discussed. The 
situation considered in this paper is quite different from that in 
[15]. We will consider a compound system which consists of three 
parts: one is a relevant system, another is a measuring device 
which is strongly or weakly coupled to the relevant one, and the 
other is an external field which is applied for investigating the lin-
ear response of an observable of the relevant system.

In this work, we apply the linear response theory to a quan-
tum system, where both pre-selection and post-selection are per-
formed. We consider strong and weak measurement to obtain an 
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average value of a system observable. In Section 2, we briefly sum-
marize the time evolution of strong and weak values of an ob-
servable of a pre- and post-selected system. In Section 3, we drive 
the linear responses of strong and weak values to a weak external 
field and we discuss their properties. In particular, we investigate 
time-symmetric property in the linear response. In Section 4, we 
provide concluding remarks.

2. Strong and weak values in a pre- and post-selected system

We suppose that a physical system is initially prepared (or pre-
selected) in a quantum state described by a density matrix ρ̂i at 
initial time ti . The system may consist of two parts; one is a rele-
vant system and the other is a surrounding environment. The time-
evolution of the whole system is determined by a Hamiltonian 
Ĥ(t) which depends on time if a time-dependent external field 
F (t) is applied to the system. Then the system evolves into the 
quantum state ρ̂(t) = Û F (t, ti)ρ̂i Û

†
F (t, ti) at time t [16,17], where 

the time evolution operator Û F (t) is given by

Û F
(
t, t′) = T exp

(
− i

h̄

t∫
t′

ds Ĥ(s)

)
. (1)

In this equation, the symbol T stands for the chronological order-
ing of operators. We perform measurement on the system at time 
tm . When we obtain some measurement outcome denoted as a, the 
system changes into the quantum state ρ̂a(tm) which depends on 
the result a [16]. After the measurement, the system evolves again 
with time and thus we have ρ̂a(t) = Û F (t, tm)ρ̂a(tm)Û †

F (t, tm) at 
time t (> tm). Finally we perform a post-selection of the system at 
time t f by making use of a generalized measurement described 
by positive operator-valued measure (POVM) π̂ f which satisfies ∑

f π̂ f = 1̂ and π̂ f > 0 [16,18]. In the following, we derive the av-
erage value obtained from the measurement outcomes under the 
condition that the post-selection π̂ f of the system is done.

2.1. Strong measurement

First we consider the case that ideal strong measurement of an 
observable Â is performed on the system at the measurement time 
tm (ti < tm < t f ) [1,2]. It is described in terms of the projection op-

erators |a〉〈a|, where |a〉 is an eigenstate of Â such that Â|a〉 = a|a〉. 
For the sake of simplicity, we assume that all the eigenvalues are 
non-degenerate and thus the completeness 

∑
a |a〉〈a| = 1̂ and the 

orthogonality 〈a|a′〉 = δaa′ hold. In this case, the probability of the 
measurement outcome a is given by P s(a) = 〈a|ρ̂(tm)|a〉 and the 
post-measurement state of the system is ρ̂a(tm) = |a〉〈a| [1,2]. Then 
the state of the system just before the post-selection becomes 
ρ̂a(t f ) = Û F (t f , tm)|a〉〈a|Û †

F (t f , tm). Since the conditional probabil-
ity that the post-selection π̂ f is done for given a is P s( f |a) =
Tr[π̂ f ρ̂a(t f )], the joint probability P s( f , a) = P s( f |a)P s(a) of the 
post-selection f and the measurement outcome a is given by

P s( f ,a) = Tr
[
π̂ f ÛF (t f , tm)

{|a〉〈a|{ÛF (tm, ti)ρ̂i
}|a〉〈a|}], (2)

with

ÛF
(
t, t′) = T exp

( t∫
t′

ds L̂(s)

)
, (3)

where L̂(t) = −(i/h̄)Ĥ×(t) is the Liouvillian superoperator [17]
with X̂× Ŷ = [ X̂, Ŷ ]. In Eq. (2), Tr stands for the trace opera-
tion over the Hilbert space of the system. Using the Bayesian 
theorem [19,20], we obtain the posterior probability P s(a| f ) =

P s( f , a)/ 
∑

a P s( f , a) that the measurement outcome a is obtained 
under the condition that the post-selection π̂ f is done,

P s(a| f ) = 〈a|Û †
F (t f , tm)π̂ f |a〉〈a|ÛF (tm, ti)ρ̂i|a〉∑

a〈a|Û †
F (t f , tm)π̂ f |a〉〈a|ÛF (tm, ti)ρ̂i |a〉

, (4)

where we have used Tr[ X̂ÛF (t, t′)Ŷ ] = Tr[Ŷ Û †
F (t, t′) X̂]. Hence we 

find the strong value As of the observable Â of the pre- and post-
selected system,

A F
s =

∑
a

aP s(a| f )

=
∑

a a〈a|Û †
F (t f , tm)π̂ f |a〉〈a|ÛF (tm, ti)ρ̂i |a〉∑

a〈a|Û †
F (t f , tm)π̂ f |a〉〈a|ÛF (tm, ti)ρ̂i |a〉

, (5)

which is equivalent to the special case of the general formula de-
rived by Aharonov, Bergmann and Lebowitz [3,21,22].

2.2. Weak measurement

Next we suppose that weak measurement of an observable Â
[4–6] is performed on the system at the measurement time tm
between the pre-selection and the post-selection. The weak inter-
action between the system and the measuring device is usually 
assumed to be Ĥ M = h̄gδ(t − tm) Â ⊗ P̂ [1], where P̂ is a conjugate 
variable of a pointer observable Q̂ of the measuring device and the 
commutation relation [Q̂ , P̂ ] = ih̄ holds. In this case, the quantum 
state of the measuring device just after the post-selection is given 
by

ρ
f

M = Tr[π̂ f ÛF (t f , tm){e−ig Â⊗ P̂ {ÛF (tm, tt)ρ̂i} ⊗ ρ̂M eig Â⊗ P̂ }]
TrM Tr[π̂ f ÛF (t f , tm){e−ig Â⊗ P̂ {ÛF (tm, tt)ρ̂i} ⊗ ρ̂M eig Â⊗ P̂ }]

,

(6)

where ρ̂M is the initial state of the measuring device at the 
time tm and TrM is the trace operation over the Hilbert space 
of the measuring device. The average shift of the pointer observ-
able caused by the interaction with the relevant system is given by 
�Q = TrM [Q̂ (ρ̂

f
M − ρ̂M)]. In the weak coupling limit, the average 

pointer shift �Q is proportional to the real part of the weak value 
A F

w of the observable Â [10],

A F
w = Tr[π̂ f ÛF (t f , tm) ÂÛF (tm, tt)ρ̂i]

Tr[π̂ f ÛF (t f , tt)ρ̂i]
, (7)

the imaginary part of which can be derived from �P =
TrM [ P̂ (ρ̂

f
M − ρ̂M)] [10]. When the denominator on the right-hand 

side of Eq. (7) is sufficiently small, Re A F
w and Im A F

w can take large 
values beyond the spectral range of the observable Â, though the 
success probability of the post-selection becomes sufficiently small 
[4–6]. In the next section, we will investigate the linear response 
of the strong value A F

s and the weak value A F
w to an external field 

F (t).

3. Linear response to an external field

To investigate the linear response to an external field, we as-
sume that a weak c-number external field F (t) is applied to the 
system during the time evolution. The interaction Hamiltonian is 
given by Ĥ F (t) = −F (t)B̂ [11], where B̂ is a system observable 
coupled to the external field. The total Hamiltonian of the system 
is Ĥ(t) = Ĥ − F (t)B̂ , where Ĥ is the Hamiltonian of the system in 
the absence of the external field. The corresponding Liouvillian su-
peroperator is L̂(t) = L̂ + L̂ F (t) = −(i/h̄)Ĥ× + (i/h̄)F (t)B̂× . Then up 
to the first order with respect to the external field F (t), we obtain
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