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To utilize noise for systems, which are transmitting or receiving information, the information rate is a 
necessary metric to consider. The phase lag, which is the difference between the sender (applied forcing) 
and receiver (the oscillator) phases, has a significant effect on the information rate. However, this phase 
lag is a nonlinear function of the noise level. Here, the effects of phase lag on the information rate 
for a Duffing oscillator are examined and comparative discussions are made with phase lag from linear 
response theory. The phase lag is shown to be an important variable in calculating the information rate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic resonance has been classically identified as a peak in 
the signal-to-noise ratio [1], when a response measure is plotted 
against the amplitude of noise. This phenomenon, which has been 
used to describe the effects of noise on the recurrence of ice ages 
[2], was first studied in the context of a bistable Duffing oscillator 
[1] and also shown to have an important effect on the response 
of a monostable Duffing oscillator [3]. In a recent study, stochastic 
resonance has been studied in a macroscale, distributed param-
eter system, a post-buckled beam [4]. The behavior predicted by 
the integrate-and-fire model for neurons is similar to the behavior 
shown by a monostable Duffing oscillator [5].

Since Shannon’s seminal information theory work [6], infor-
mation-theoretic techniques have been applied to many different 
systems. A binary channel has been studied by using information 
capacity [7]. In experimental work, mutual information has been 
used to show broadband stochastic resonance in a neuron [8]. The 
channel capacity has also been used to detect the occurrence of 

* Corresponding author.
E-mail addresses: edmon@umd.edu (E. Perkins), balab@umd.edu

(B. Balachandran).
1 Graduate Research Assistant.
2 Minta Martin Professor.

stochastic resonance in a neuron model [9], where it was noted 
that the location of the channel capacity maximum occurs at a 
higher noise amplitude than does the maximum of the signal-
to-noise ratio (SNR). In the present work, a similar result is ob-
tained. Furthermore, for different phase lags, the peak is found 
to occur at different noise amplitudes. For a neuron model, ape-
riodic stochastic resonance has been measured by using mutual 
information [10]. Also, this measure was used to study a neu-
ron experiencing adaptive stochastic resonance [11]. Simulations 
have also been carried out with a bistable dynamic system by us-
ing an Euler discretization scheme, revealing a single peak in the 
channel capacity [12]. After converting input and output signals to 
binary sequences, experimental data from a Schmitt trigger have 
been shown to exhibit extrema when studied with conditional and 
Kullback entropies [13]. For weak forcing and noise variance, the 
behavior of the normal form equation was examined by using mu-
tual information [14]. The Fisher information measure has also 
been used to study responses of a parallel array of sensors [15]. 
Entropy measures for several dynamical systems, including a lin-
ear oscillator, are discussed in reference [16].

The rest of this article is organized as follows. In the next 
section, the equations governing the nondimensionalized bistable 
Duffing oscillator are discussed. Euler–Maruyama simulations are 
presented in the following section, as well as the approach used 
to convert the continuous system response into a binary signal. 

http://dx.doi.org/10.1016/j.physleta.2014.11.026
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.11.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:edmon@umd.edu
mailto:balab@umd.edu
http://dx.doi.org/10.1016/j.physleta.2014.11.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.11.026&domain=pdf


E. Perkins, B. Balachandran / Physics Letters A 379 (2015) 308–313 309

x Oscillator displacement
x1 Oscillator position in state space
x2 Oscillator velocity in state space
c Viscous damping
ζ Damping ratio
k1 Linear stiffness
k3 Nonlinear stiffness

K̂ Nondimensionalized stiffness

Ω Forcing frequency

Ω̂ Nondimensionalized forcing frequency

ωn Natural frequency

W ′(τ ) White Gaussian noise (derivative of Wiener process)

σ̂ Nondimensionalized noise amplitude

The Fokker–Planck equation and cumulant neglect method are pre-
sented in the subsequent section. By using the Euler–Maruyama 
method and the moment evolution equations, the information rate 
is used to assess the influence of noise on the system response. By 
considering the phase lag as a parameter in calculating the infor-
mation rate, a relationship amongst the phase lag, noise amplitude, 
and information rate is shown. Concluding remarks are collected 
together in the final section.

2. System equations

The equation of motion governing a bistable Duffing oscilla-
tor with mass m, viscous damping c, linear stiffness k1, nonlinear 
stiffness k3, forcing amplitude F , and forcing frequency Ω can be 
written as

mẍ + cẋ − k1x + k3x3 = F sin(Ωt) (1)

where all of the parameters assume positive values and an over-
dot indicates differentiation with respect to time t . After dividing 
Eq. (1) by m and introducing a nondimensional time τ = ωnt , the 
resulting equation takes the form

ω2
n

d2x

dτ 2
+ 2ζω2

n
dx

dτ
− ω2

n x + k3

m
x3 = F

m
sin

(
Ω

ωn
τ

)
(2)

Dividing through by ω2
n and introducing primes to indicate dif-

ferentiation with respect to the nondimensional time τ , the result 
is

x′′ + 2ζ x′ − x + k3

k1
x3 = F

k1
sin

(
Ω

ωn
τ

)
(3)

Finally, after substituting the nondimensional parameters K̂ =
k3
k1

, F̂ = F
k1

, and Ω̂ = Ω
ωn

, the equation becomes

x′′ + 2ζ x′ − x + K̂ x3 = F̂ sin(Ω̂τ ) (4)

After including nondimensional noise, the stochastic differential 
equation (SDE) for the nondimensionalized bistable Duffing equa-
tion is modified to

x′′ + 2ζ x′ − x + K̂ x3 = F̂ sin(Ω̂τ ) + σ̂ W ′(τ ) (5)

2.1. Numerical results

In Eq. (5), the oscillator is subjected to a deterministic forcing 
F̂ sin(Ω̂τ ) and a stochastic input σ̂ W ′(τ ). Writing in state-space 
form, one obtains⎧⎪⎪⎨
⎪⎪⎩

dx1

dτ
= x2

dx2

dτ
= −2ζ x2 + x1 − K̂ x3

1 + F̂ sin(Ω̂τ ) + σ̂ W ′(τ ),

(6)

where x1 and x2 correspond to the position and velocity, respec-
tively. The white noise term, W ′(τ ), is defined as the derivative 
of Brownian motion. Since Brownian motion (or in the physics 
literature, the Wiener process) has independent increments, its 

derivative does not exist with probability one [17]. For this rea-
son, W ′(τ ) is a “mnemonic” derivative. Hence, writing Eq. (6) in 
differential form, one has
{

dx1 = x2dτ

dx2 = [−2ζ x2 + x1 − K̂ x3
1 + F̂ sin(Ω̂τ )

]
dτ + σ̂dW

(7)

In this form, one no longer has the derivative of Brownian mo-
tion but a differential white noise which does exist. This system is 
integrated as an Itō integral, and the Euler–Maruyama method can 
be used to obtain numerical solutions for Eq. (7) [18]. These sim-
ulations were performed on a desktop computer, with a 4.00 GHz 
processor, by using MATLAB. Although this code was not optimized 
for speed, it took approximately 7.6 hours of wall time to run the 
200 Euler–Maruyama simulations for each of the 100 noise ampli-
tudes considered and to do the subsequent averaging.

The information rate R is defined as

R = H(x) − H y(x), (8)

where the Shannon entropy is H(x) = − 
∑

i pi log2 pi and the con-
ditional entropy is H y(x) = − 

∑
i, j p(i, j) log2 pi( j), where pi( j) =

p(i, j)∑
j p(i, j) . Since the Duffing oscillator response is a continuous time 

response, one needs to convert the oscillator’s position response 
into a binary output, before the associated information rate can 
be computed. A natural choice is to represent displacements be-
low zero with “0” and displacements above zero with “1”. With 
this choice, the positive piece of an input sine wave from 0 to π
would be considered as one instance of “1”. Thus, averaging over 
this range is sufficient to convert the continuous signal into a bi-
nary signal. However, given the inherent delay in an input-output 
relationship, care must be exercised in choosing a phase lag for the 
continuous output signal, before converting it into a binary one. In 
this paper, phase lag constants for different noise amplitudes are 
considered and their effects are examined. An example of this pro-
cess for the no noise and no phase lag case is presented in Fig. 1. 
In the first part of this figure, the forcing input, in black color, and 
the output response, in grey color, are both plotted. In the middle 
part of this figure, the binary conversion scheme is implemented 
as previously discussed. In the bottom part of this figure, the bi-
nary displacements have been averaged over sections of one half 
period of the forcing frequency. After this was done, if the averaged 
binary displacement over that length of time was above “0”, it was 
converted to a bit value of “1”. If the averaged binary displacement 
over that length of time was below “0”, it was converted to a bit 
value of “0”. By shifting the half period sections to be averaged 
(i.e., by changing the phase lag), different averages and subsequent 
bit values can be obtained and studied.

In Figs. 2 and 3, the computed mean information rate for 200 
simulations is shown, over a noise level range. The effects of dif-
ferent phase lag values can be seen in both figures. In Fig. 4, the 
maximal information rate is plotted against the noise amplitude, 
along with the phase lag amount that maximizes the information 
rate. Interestingly, the phase lag graph is not monotonic. When a 
case with no phase lag is considered, a double peak can be ob-
served in the information rate as shown in Fig. 5. The position of 
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