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Taking account of the results of the paper, published in [21] (Chabchoub and Akhmediev, 2013), 
containing experimental generation of rogue wave triplets in the water tank, we demonstrate a 
theoretical approach to coherently control the rogue wave triplet dynamics and spectral spread in a 
tapered index optical waveguide. The relative distance between the successive waves of the triplet, along 
both longitudinal and transverse axes, can be manipulated by modulating the tapering of the waveguide. 
This not only significantly enhances the possibility of observing these statistically rare events in the 
waveguide, but can also controllably amplify the intensity and spectral spread, the desired features for 
supercontinuum generation. The controlling of real Riccati parameter intrinsically arises from the allowed 
phase variation of the self-similar solutions of the nonlinear Schrödinger equation.

© 2014 Published by Elsevier B.V.

1. Introduction

Rogue waves are high amplitude pulses, with amplitude ap-
proximately three times higher than the average wave crest [1,2]. 
Firstly observed in the oceans [3], the investigation of these waves 
is now being pursued in other physical systems, such as nonlin-
ear optics [4–6], Bose–Einstein condensates (BEC) [7], superfluids 
[8,9] and capillary waves [9,10]. Owing to their astonishing proper-
ties, they are being exhaustively studied [11–13]. Mathematically, 
these waves are well described by rational solutions of nonlinear 
Schrödinger equation (NLSE), which are localized in both space and 
time. NLSE being an integrable system, a hierarchy of its higher 
order rogue wave solutions can be obtained by using Darboux 
transformation [1,2]. After significant amount of theoretical and 
numerical studies, a thrust in the direction of their controllable 
experimental observation is catching pace. First ever work in this 
direction was done by Solli et al. [4,14]. They showed the existence 
of rogue waves in nonlinear fiber optics, and the concept of optical 
rogue wave was introduced as a counterpart of the oceanic rogue 
waves. These waves were found to be generated infrequently from 
initial smooth pulse, resulting from the power transfer seeded by 
small perturbation. The experimental ability to dilate the temporal 
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duration with group velocity dispersion played a significant role in 
their observation. Rogue wave dynamics and its control is an area 
of active current research, due to its application in supercontinuum 
generation [5,14].

Recently a new phenomenon, known as ‘splitting of higher or-
der rogue waves into lower order rogue waves’ is drawing signifi-
cant attention [15–20]. Here, one observes that an nth order rogue 
wave can be decomposed into n(n + 1)/2 Peregrine breathers and 
hence these are also called fissioned higher order rogue waves. To 
the lowest order, this effect can be observed in the second or-
der rogue wave, where its splitting into three first order rogue 
waves takes place, well known in the literature as rogue wave 
triplet. This signifies their nonlinear superposition; if it would have 
been a linear superposition phenomenon, then for the nth or-
der rogue wave, number of peaks would have been n. The triplet 
rogue wave comprises a two parameter family [15]. These real free 
parameters define size and orientation of the Peregrine breather. 
These are implicitly related to the translation of spatio-temporal 
axes. When these parameters take zero values, the solution gets 
localized at origin with the amplitude five times that of an av-
erage crest. For arbitrary nonzero values of these parameters, a 
triplet of rogue waves, distributed on equilateral triangle, is formed 
[16,17], where the distance between the peaks depends on their 
magnitude. First experimental observation of these rogue wave 
triplets took place in water tank [21]. Chabchoub and Akhmediev
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performed it specifically for two sets of these parameters, although 
in principle these can be observed for a whole family of two pa-
rameters [21]. They remarked that “the major difficulty of the ex-
periment with the second order triplet solution is that it requires 
long propagation distances. These are longer than the actual length 
of the tank which is a significant limitation. To overcome this dif-
ficulty the experiment can be done in sequences”. Further they 
write “this work may also motivate similar experiments in optics. 
An advantage of the fiber optical setup is that the arbitrarily large 
propagation distances can be realized thus avoiding the restrictions 
that we have in the case of a short water tank”.

The fact that nonlinear superposition plays an intrinsic role in 
the generation and dynamics of the rogue wave triplet, raises the 
possibility of their manipulation through phase control. Here, we 
show the coherent control of rogue wave triplets in a tapered in-
dex optical waveguide, which makes essential use of their phase 
manipulation. Due to which not only the relative distance be-
tween the triplets can be varied controllably, but their intensity 
can also be manipulated through superposition effect. We find 
that by modulating the tapering of waveguide, intensity can be 
enhanced which also results in their closer appearance. This is sig-
nificantly helpful in observing the rogue wave triplet, a statistically 
rare event, in a smaller length experimental set up. In our study, 
we mainly focus on sech2 type tapered waveguide and the unta-
pered waveguide for comparison. The present work is an extension 
of our previous work regarding the control of the intensities of 
similaritons and rogue waves in the tapered graded-index non-
linear waveguide [22,23]. In this context, various research groups 
have done an exhaustive study of the generalized NLSE describing 
the BEC, as well as nonlinear optics [24–30]. Recently Dai et al., 
studied the existence of self-similar rogue wave triplet in nonlinear 
system with linear potential and studied the effect of postpone-
ment, recurrence and annihilation of these waves, in the presence 
of tapering and inhomogeneous nonlinearity structure [31]. Fur-
ther, for the periodically distributed systems they showed the pe-
riodic recurrence of rogue wave triplet resulting in the formation 
of cluster [32].

As for the homogeneous/autonomous NLSE case, distance be-
tween waves of triplet can be controlled by the free parameters 
[15]. Here in this work we show that by keeping the values of 
these parameters same but modulating the tapering of waveguide, 
this distance can be controlled quite effectively. The introduced 
parameter hence can be physically interpreted as the modulation 
in tapering profile of nonlinear optical waveguide. In this pro-
cess, their intensities and spectral spread can also be manipulated, 
a much desired feature in supercontinuum generation.

The Letter is organized as follows. In Section 2, we briefly out-
line the governing equation for the tapered waveguide. Establish-
ing its connection with pure NLSE, we illustrate the procedure of 
phase control of the rogue waves through tapering modulation. In 
Section 3, different types of tapering are introduced. After compar-
ing the dynamics of rogue wave triplet in tapered and untapered 
waveguides in Section 4, we summarize our results and make the 
conclusion (Section 5).

2. Model system and governing equation

The dynamics of system under study is described by general-
ized NLSE
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where u(x, z) is the complex envelope of the electric field, g and α
account for linear gain and loss, respectively. Parameter k0 =

2πn0/λ, λ being the wavelength of the optical source generat-
ing the beam; n1 is the linear defocussing parameter (n1 > 0), 
and n2 represents Kerr-type nonlinearity. The dimensionless profile 
function F (z) can be negative or positive, depending on whether 
the graded-index medium acts as a focusing or defocussing linear 
lens. We introduce the normalized variables X = x/w0, Z = z/LD , 
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−1/4. Thus Eq. (1) can be rewritten in a dimen-

sionless form [33]:
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The self-similar optical rogue wave solutions of Eq. (2) can be ob-
tained by transforming it into standard NLSE by using gauge and 
similarity transformations [33,32], together with generalized scal-
ing of Z variable

U (X, Z) = 1
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Ψ
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]
eiΦ(X,Z), (3)

where, W (Z) and Xc(Z) are the dimensionless width and position 
of the self-similar wave center. The quadratically chirped phase is 
given by

Φ(X, Z) = C1(Z)
X2

2
+ C2(Z)X + C3(Z), (4)

where C1(Z), C2(Z) and C3(Z) are parameters related to the 
phase-front curvature, the frequency shift, and the phase offset, 
respectively. Using Eqs. (3) and (4) in Eq. (2), we obtain Ψ (ζ, χ)

satisfying
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with the effective propagation distance, similarity variable, guiding-
center position, and phase are given respectively as

ζ(Z) = ζ0 +
Z∫

0

dS

W 2(S)
, χ(X, Z) = X − Xc(Z)

W (Z)
,

Xc(Z) = W (Z)

(
C02

Z∫
0

dS

W 2(S)
+ X0

)
,

and

Φ(X, Z) = X2

2W (Z)

dW (Z)

dZ
+ C02 X

W (Z)
− C2

02

2

Z∫
0

dS

W 2(S)
, (6)

where, C2(0) = C02, Xc(0) = X0, with W (0) = 1. Further, the taper-
ing function, gain and width W (Z) of self-similar wave are related 
as

d2W (Z)/dZ 2 − F (Z)W (Z) = 0, (7)

and

G(Z) = − 1

W (Z)

dW (Z)

dZ
. (8)

Hence, for any given solution of NLSE, the corresponding self-
similar solutions of Eq. (2) can be obtained using the transforma-
tion (3). Among all existing solutions of NLSE, we are specifically 
interested in its rogue wave triplet solution:

Ψ (χ, ζ ) =
[

1 + G2(χ, ζ ) + iK2(χ, ζ )

D2(χ, ζ )

]
eiζ ,
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