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It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian 
system. Some of the implications of using ideas from theoretical physics to study biological processes are 
discussed.
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1. Introduction

The physicist Eugene Wigner famously wrote on the enormous 
contribution that mathematical theories have made to physics [1]. 
By contrast, mathematics has so far had less impact on biology 
[2]. Biological systems can be viewed as an emergence of the laws 
of chemistry and the principle of natural selection, and this un-
derlying complexity makes biological processes incredibly difficult 
to study mathematically. There are many instances where sym-
metry apparent on the level of an organism breaks down when 
one is to look on the molecular or cellular scale. For example, the 
body plans of most animals display some form of radial or bilateral 
symmetry, but this is not a symmetry in the exact sense as is re-
vealed if one is to consider the arrangement of cells. Consequently, 
the symmetry of an organism can only be considered a symmetry 
‘from far away’ much like the symmetries of statistical phenomena 
or the apparent homogeneity of the cosmos.

On the other hand, more exotic symmetries can be found in 
the elementary world described by the standard model of parti-
cle physics. There the concept of spontaneous symmetry breaking 
is well understood to play a role in hadron formation, but com-
plications immediately arise when one is moved to consider in-
teractions between multiple hadrons and the higher atomic nuclei. 
Thus, the problem of describing biological processes mathemati-
cally seems to be associated with the problem of symmetry. Whilst 
mathematics describes well the physics of the very large and very 
small it does not appear to cope well with molecular or cellular 

E-mail address: dst27@cam.ac.uk.

biology, trapped, unsymmetrically, with the insufficiently large and 
the insufficiently small.

In classical mechanics, Noether’s theorem states that for every 
symmetry of the equations of motion there is a corresponding con-
served quantity. By a conserved quantity is meant a function of 
the dynamical variables that does not vary in time so that its to-
tal time derivative always remains zero. In Hamilton’s formulation 
of classical mechanics it is the Hamiltonian representing the total 
energy of the system that always remains conserved, but in a typ-
ical biological process there is no analogue of the Hamiltonian and 
therefore no conserved quantity. Exceptions to this rule emerge 
when the equations governing these dynamical systems can be 
put into Hamiltonian form. This has been achieved for the classi-
cal Lotka–Volterra equations that govern predator-prey interactions 
[3,4], and simple signalling models involving constant degradation 
rates [5]. In these cases an analogue of the Hamiltonian immedi-
ately yields a conserved function of the dynamical variables that 
can be used to study Lyapunov stability and the location of equi-
librium points.

In physics, scale invariance is a feature of equations or observ-
ables that does not change if the scales of certain variables are 
multiplied by a common factor (often forming part of a larger con-
formal symmetry). Scale-invariance is a typical property of critical 
phenomena because experimental observables are known to fol-
low power-laws near the neighbourhood of a critical point. There 
is now a growing realisation that scale-invariance may be an in-
herent feature of many biological networks that display critical 
behaviour (this notion of scale-invariance is distinct from that of 
a network being scale-free, a topological property) [6]. For exam-
ple, recent work demonstrates that pathways involved in growth 
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factor signalling are dependent on fold-changes in concentrations 
of a molecule, and not its absolute level [7]. This is an indication 
that certain biological processes display at least some evidence of 
a symmetry.

In this paper it is suggested that many scale-invariant biolog-
ical processes can be viewed as a deformation of classical me-
chanics. In particular, the focus is on cellular signalling pathways 
and changes in the concentrations of their constitutive molecules. 
Here the symmetries present in the Hamiltonian formalism are de-
formed in a known way (that reflects deviation of the underlying 
system from being conservative) and so a conserved quantity can 
be recovered after reversing the deformation. This reversal relies 
heavily on the use of q-calculus, which is a common feature of 
deformed mechanics. The models considered have very general ap-
plications and the procedure for passing to conservative dynamics 
from a deformed system is likely to emerge as a common tool for 
studying near-symmetric biological processes. A detailed account 
of q-deformed mechanics is provided in Section 2 after a review 
of classical dynamics for readers not familiar with the Hamilto-
nian formalism. The general model and an illustrative example is 
considered in Section 3 prior to a higher-dimensional extension in 
Section 4.

2. Review of q-deformed classical dynamics in one dimension

In the Hamiltonian formulation of one-dimensional classical 
mechanics it is convenient to consider a two-dimensional real vec-
tor space V isomorphic to R2. This vector space is usually called 
phase space and the two components (x1, x2) of a vector field 
x ∈ V are often referred to as position and momentum coordi-
nates. The phase space V becomes a symplectic vector space when 
equipped with an anti-symmetric, non-degenerate bilinear form 
Ω : V × V → R. Specifically, for any x, y ∈ V the symplectic form 
Ω satisfies Ω(x, y) = −Ω(y, x) and the feature that if Ω(x, y) = 0
for all y ∈ V then x = 0. Viewed as a matrix acting on R2, Ω can 
be chosen to have the representation

Ω =
(

0 1
−1 0

)
. (1)

The symplectic form defines the Poisson bracket of two functions 
of the position and momentum coordinates. Writing the compo-
nents of x ∈ V as xa (a = 1, 2) and the components of the sym-
plectic form as Ωab (its inverse as Ωab), the Poisson bracket { f , g}
of any two functions f , g : (x1, x2) → R is defined to be the func-
tion

{ f , g} =
∑
a,b

Ωab∂a f ∂b g, (2)

where the operator ∂a denotes partial differentiation with respect 
to the coordinate xa .

In a classical physical system the total energy is a function 
H : (x1, x2, t) → R called the Hamiltonian. Consider the total time 
derivate of a Hamiltonian that does not depend explicitly on 
time t:

Ḣ =
∑

a

∂a Hẋa = ∂1 Hẋ1 + ∂2 Hẋ2. (3)

Since the system is not exchanging energy with its environment, 
the total energy should remain constant over time. Imposing the 
condition Ḣ = 0 yields the relations ∂1 H = ẋ2 and ∂2 H = −ẋ1, 
which are precisely Hamilton’s equations of motion. These can be 
written succinctly in terms of the inverted symplectic form

ẋa =
∑

b

Ωab∂b H . (4)

Once the Hamiltonian has been specified the system is determined 
uniquely since calculating the total time derivative of any function 
f : (x1, x2) → R one can show

ḟ = {H, f }. (5)

For example, Hamilton’s equations of motion are recovered taking 
f to be either of the xa .

There is a nice symmetry of Hamilton’s equations that can be 
most easily verified using the Poisson bracket formalism. Consider 
a coordinate transformation xa → Xi(x1, x2) (i = 1, 2) with associ-
ated Jacobian matrix J . The resulting change in the Poisson bracket 
is

{ f , g} =
∑
a,b

∑
i, j

Ωab J i
a J j

b∂i f ∂ j g, (6)

which means the dynamics are only preserved if J satisfies

JΩ J T = Ω (7)

so that

Ẋ i =
∑

j

Ω i j∂ j H . (8)

Elements of the general linear group GL(2, R) of non-singular 2 ×2
real matrices that satisfy (7) form a subgroup called the symplectic 
group Sp(2, R). In two dimensions the symplectic group is isomor-
phic to the group of non-singular 2 × 2 real matrices with unit 
determinant SL(2, R). Consequently, Hamilton’s equations remain 
invariant under a change of coordinates whose Jacobian is a mem-
ber of Sp(2, R). A transformation of this kind may also be called 
canonical since time evolution can be viewed as a one-parameter 
family of these generated by the Hamiltonian and taking xa(0) to 
xa(t).

The importance of symmetry is best demonstrated by Noether’s 
theorem that states for every symmetry of Hamilton’s equations 
there is an additional function of the xa that is conserved in time. 
To see this, for an infinitesimal transformation

xa → xa + ε F a(x1, x2) + O
(
ε2) (9)

to be a symmetry the requirement (7) demands

∂1 F 1 = −∂2 F 2, (10)

which is satisfied if F 1 = ∂2G and F 2 = ∂1G for some function G :
(x1, x2) →R. Then the Hamiltonian transforms infinitesimally as

H → H + ε{H, G} + O
(
ε2), (11)

but since the coordinate change is a symmetry of the Hamiltonian

0 = ε{H, G} = εĠ (12)

and therefore G is also conserved. The existence of conserved 
quantities is useful for qualitative study of complicated isolated 
systems, but these are rarely present in biological processes op-
erating far from equilibrium.

Deformations of Hamilton’s equations arise when one moves to 
a non-commutative setting, the standard example being canoni-
cal quantisation in quantum mechanics. This deformation is on the 
scale of Planck’s constant h and involves promoting x1 and x2 to 
operators x̄1 and x̄2 that satisfy

x̄1 x̄2 − x̄2 x̄1 = ih̄, (13)

where i = √−1 and h̄ = h/2π . A less-well-known example is the 
q-deformation, which involves some fixed real parameter q differ-
ent than 1 and takes the form
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