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We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration 
of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin 
helical states localized beside the defect line: spin-up electrons flow forward on one side near the
line defect and move backward on the other side, and vice versa for spin-down electrons. When the 
system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-
flipped scattering when they transport along the line defect than in the bulk. An electric gate above the 
line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable 
waveguide.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A variety of two-dimensional materials of the lattice structure 
similar to graphene have drawn intensive attention in recent years. 
Silicene, germanene, and stanene have the buckled honeycomb lat-
tice, and Dirac points were found in their electronic structures [1]. 
Comparing to graphene, there are advantages of these materials 
stemming from the lattice buckling. A normally applied electri-
cal field induces a stagger potential and causes a band gap [2], 
which is essential for the application. The buckling dramatically 
increases the spin–orbit coupling (SOC) [3], while it is too weak to 
induce observable effect in graphene [4]. The SOC in a honeycomb 
lattice material makes it a topological insulator and spin helical 
edge states exist in the edges [5]. The combination of the stag-
ger potential and the SOC results in valley polarization [6,7], and 
various spin and valley related physics can be found in junction 
systems [8–10]. Recently, researchers successfully fabricated line 
defects in honeycomb lattices [11,12], which has spurred lots of 
discussions on their electronic properties. A tight-binding investi-
gation reveals that the system is gapless [13], and can be regarded 
as a quantum waveguide [14]. When a magnetic field is applied, 
localized states arise beside the defect line, like the edge states on 
the edges. The quantum states around the line defect can be de-
scribed by the low energy continuum model with a proper wave 
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connection condition [15,16]. An efficient valley filter effect can be 
caused by multiple defect lines due to the valley-dependent res-
onance [17,18]. The studies on the defect line are all based on 
graphene lattice, in which no SOC need to be considered. Due
to the new features caused by lattice buckling, we expect more 
physics can be found in the silicene-like lattice with the defect 
line.

In this paper, we investigate the band structure of a silicene-like 
lattice with a line defect under the consideration of spin–orbit cou-
pling. Fig. 1(a) shows the x–y projection of the investigated lattice, 
the defect atoms lie on the line y = 0 and the buckling ampli-
tude for the defect atoms is assumed to be the same as that of 
the bulk lattice. We find there are two bands related with the line 
defect for each spin electrons between the bulk dispersions. The 
states of one band are most localized on the defect atoms them-
selves and the other most localized on the atoms nearest to the 
defect line (we refer these atoms closest to the line defect as the 
defect edge atoms). The spin-up defect edge states propagate along 
one defect edge and run back along the other defect edge, and the 
spin-down ones behave reversely, i.e., they are spin helical states. 
The stagger potential makes the bands asymmetric and alters the 
localization properties of the defect edge states. We study the 
spin-flipped transport when the lattice is subjected by random dis-
tribution of spin-flipped impurities. There always exists an energy 
interval within the bulk gap, in which the spin-flipped transmis-
sion is much smaller than that of the bulk electrons. This property 
stems from the separation in real space between the states of dif-
ferent spins.
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Fig. 1. (Color online.) (a) x–y projection of a silicene-like lattice with a line defect. 
The filled and empty circles represent atoms buckled-up and buckled-down respec-
tively. (b) Dispersion E(k) (in units of t) versus wavevector k (in units of π/a). 
The lateral atom number is 40. (c) The probability distribution of the eigen-state
marked by point A in the dispersion. Larger atom circle radius means larger prob-
ability on the atom. (d) The probability distribution of the eigen-states marked by 
point B . (e) ρ0 of the curve-1 (solid line) and curve-2 (dashed line) as functions 
of k.

2. Calculations and discussions

2.1. The Hamiltonian

The tight-binding Hamiltonian including the SOC reads

H = δ
∑
iα

νic
+
iαciα − t

∑
〈i j〉α

c+
iαc jα

+ iγ
∑

〈〈i j〉〉αβ

νi jc
+
iασ z

αβc jβ (1)

where c+
iα (ciα ) is the creation (annihilation) operator for an elec-

tron with spin α on site i, σ z is the z-component of Pauli matrix, 
and the summations with the brackets 〈..〉 and 〈 〈..〉 〉 run over all 
the nearest and next-nearest neighbor sites, respectively. The first 
term is the Hamiltonian related with the stagger on-site poten-
tial, in which νi = 1 when i represents a buckled up atom and 
νi = −1 for buckled down atom, and δ is the stagger potential 
amplitude. The second term is the Hamiltonian of the nearest 
neighbor hopping with hopping energy t . The third term is the 
SOC Hamiltonian which involves the next-nearest neighbor hop-
ping with amplitude γ and a path dependent amplitude νi j . For 
the electron couples form atom i, mediated by a nearest neigh-
bor site and to a next-nearest neighbor atom j, we have νi j = 1
if it makes a left turn and νi j = −1 if goes a right turn. Since the 
line defect lies along x-direction, the wavevector in x-direction is a 
good quantum number. The calculation is conducted in a transla-
tional cell. In y-direction, the periodical edge condition is adopted 
to avoid the distraction of the edge states, which are not our tar-
gets.

2.2. The basic case: δ = 0 and γ = 0

Firstly, we investigate the electronic structure of the system 
when both the stagger potential and the SOC are turned off (i.e., 
δ = 0 and γ = 0). The dispersion is shown in Fig. 1(b). It can be 
seen that the dispersion is quite similar to that of a graphene 
ribbon, except that there are two additional curves lacking of 

electron–hole symmetry. The two bands are labeled by curve-1 and 
curve-2 in the figure and we will conduct detailed investigation on 
their properties for a variety of parameters. There is a flat part on 
curve-1, which implies that these states bear analogous properties 
of edge states. Fig. 1(c) shows the electron probability distribution 
of the eigen-state represented by point A on curve-1, and one can 
see that the density is most localized on the defect edge atoms. 
If we choose another point on the flat band apart from point A
(a point between A and C ) to study, we find the density decays 
away from the defect edge atoms to the bulk of either side, and 
the decay rate depends on the deviation of the point studied from 
point A (not shown in the figure). These features are just those 
of edge states for a zigzag graphene ribbon, which is not strange 
because the defect edge atoms are just the real edge ones if the 
defect atoms are removed. For this reason, we call these defect-
nearest atoms as defect edge ones. The electron density of point 
B on curve-2 is shown in Fig. 1(d). The density is most localized 
on the defect atoms and slightly scattered on nearby atoms. For 
other points on the same curve near point B , the densities are 
more scattered on more atoms around the defect atoms, and de-
cay away into the bulk (not shown in the figure). We also examine 
the properties of other parts of curve-1 and curve-2. The states of 
EC and F D are distributed on both the defect atoms and the de-
fect edge atoms, as the states of part C B of curve-2, while, DC
represents bulk states, which is result of the band crossing that 
occurs at point D . The density distributions of the two bands are 
symmetric with respect to the defect line.

To describe the localization on the defect atoms, we define 
quantity

ρ0 = ρ(y = 0), (2)

where ρ is the probability distribution. Fig. 1(e) shows ρ0 of curve-
1 and curve-2 as functions of k. From E to C , ρ0 decreases con-
tinuously, abrupt change happens at point C because of the band 
crossing, and it vanishes for part C A (the flat part) since it rep-
resents defect edge states. ρ0 of curve-2 experiences one more 
abrupt change because there is an additional crossing at point D
besides of the crossing at point C ; part F D of it is almost over-
lap with ρ0 curve for curve-1 since they have similar localization 
properties; for part DC , ρ0 is zero, which reflects the properties 
of the bulk states and the electron probability on the defect atoms 
is infinitesimal; and from C to B , the density on defect atoms is 
continuously increased.

2.3. The general cases

Now we turn the SOC term on to a small value. For this case 
the system is spin-dependent, we only study the properties for the 
spin-up electrons for now, and discuss spin-down electrons later. 
The SOC induces a gap 2
SO at each valley for a perfect bulk 
silicene-like lattice, which depends on the SOC by


SO = 3
√

3γ . (3)

The small gap can be found between curve-1 and curve-2 near 
valley K in Fig. 2(a), and it causes slightly smearing of the abrupt 
changes of ρ0 versus k for both curve-1 and curve-2, as illustrated 
in Fig. 2(f). When we increase the SOC amplitude, the gap at valley 
K increases correspondingly, the smearing of ρ0 is more appar-
ently, the defect states around point C on curve-1 and the bulk 
states around the point on curve-2 are mixed with each other, and 
the ρ0 = 0 part disappears. The bulk gap at valley K or K ′ is not 
the real gap between curve-1 and curve-2, because the bottom of 
curve-1 remains almost unchanged at E = 0 when γ changes.

In the energy gap, the SOC drives spin-up electrons piled up at 
one edge if edges exist, and spin-down electrons at the other edge. 
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