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Using a renormalization group approach, we study the entanglement properties of two spin glass models: 
the X X Z Heisenberg (with Dzyaloshinskii–Moriya interaction) and Ising transverse field spin glasses. The 
concurrence for both models are obtained through the Kadanoff renormalization group (RG) approach 
with random J z

i and J i respectively. The constant couplings in the RG flow are randomized through the 
Gaussian distribution. For � = 0 corresponding to a non-spin glass material, a first-order transition is 
expected. By varying � from 0.05 to 0.5, the spin glass effect broadens the sharp transition resulting 
in a second-order-like transition. The fluctuations in the average concurrence for the spin glass case as 
measured by the standard deviations is also a good indicator of quantum phase transition.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With just a few percent of a magnetic element randomly dis-
tributed in a non-magnetic host such as noble metals, a dilute 
alloy of a spin glass is formed producing many interesting ex-
perimental results. These results have initiated a whole range of 
new topics specifically in the areas of statistical mechanics and 
condensed matter physics. Unlike a classical piece of glass, a spin 
glass consists of magnetic moments or spins which are randomly 
distributed and quenched. Due to the disorderness, the spins con-
flict with one another giving rise to frustration effects [1–7]. These 
disorders and frustrations produce a complex and rugged free en-
ergy landscape. The magnetic element or impurity like manganese 
(Mn), iron (Fe) or europium (Eu) is introduced into a non-magnetic 
metal capable of dissolving the impurities. Examples of such di-
luted alloys are copper and manganese, Cu1−xMnx [8] or gold and 
iron, Au1−xFex [9]. Alloys with properties of insulation and conduc-
tion can also be considered as spin glass and there are europium 
strontium sulfur EuxSr1−x S [10] which is a semiconductor and lan-
thanum gadolinium aluminum La1−xGdxAl2 [11] which is a metal.

Two of the central experimental signatures that are usually 
used to characterize whether a material is a spin glass are mag-
netic susceptibility and specific heat capacity. For any typical spin 
glass, the magnetic susceptibility usually shows a cusp at a certain 
freezing temperature T f for low applied magnetic field. By vary-
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ing the impurity concentration in these alloys, there is a critical 
temperature which corresponds to the cusp of the susceptibility. 
This critical temperature is termed the freezing temperature [12]. 
For any phase transition to occur, all thermodynamic functions will 
behave singularly [13,7]. Hence, the cusp in the magnetic suscep-
tibility suggests that there may be a phase transition at a partic-
ular critical temperature. A broader maxima is produced if around 
100 G of applied magnetic field is present when the susceptibil-
ity is measured [9,14,15]. In contrast to the effect of being field 
dependent, certain spin glasses are also found to be frequency de-
pendent [8,16]. Even though the magnetic susceptibility of a typ-
ical spin glass does exhibit a sharp cusp in low magnetic field, 
other measurements like the specific heat capacity of Au0.92Fe0.08
[17] and CuMn [18] were found to have no singularity. This means 
that only a broad, smooth and rounded maximum is produced in-
stead of a cusp. Moreover, the rounded maximum of the specific 
heat capacity does not coincide with the transition temperature 
for the magnetic susceptibility. Beyond the experimental studies, 
theories like the Edwards–Anderson (EA) model [19] which only 
allows the spins to interact via nearest-neighbor couplings with no 
long range order and Sherrington–Kirkpatrick (SK) model [20] for 
which every spin couples equally with every other spin are for-
mulated in an attempt to explain mainly the cusp in the magnetic 
susceptibility. The EA model essentially replaces the site disorder 
and Ruderman–Kittel–Kasuya–Yosida (RKKY) distribution [21–23]
with a random set of bonds. This set of random bonds is usu-
ally taken from a distribution like Gaussian. In order to understand 
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the spin glass phase, an order parameter q has been formulated to 
characterize it. Despite that different and new theories have been 
produced to understand the physics of spin glass, other problems 
from the theories have since arisen. As an example, original EA 
equations are not simple to solve and are only soluble in the lim-
its T → 0 and T → T f . Moreover, the EA equations showed an 
asymmetric cusp in the magnetic susceptibility and specific heat. 
In disagreement, the results by Fischer [24] has showed that the 
theoretical specific heat is different from the experimental result 
except for the low temperature linear dependence when using 
spin S = 1

2 . Even though the SK model did exhibit a cusp in 
the magnetic susceptibility and specific heat, the entropy S be-
comes negative at T = 0 [20]. When q = 0, the spin glass state 
has lower free energy than it has for q �= 0. With such instabil-
ity in the SK solution, Almeida and Thouless (AT) [25] showed 
the stability limits of the SK solution by using the AT line to 
divide the unstable and stable areas in the spin glass phase di-
agram. The instability is essentially due to the fact that the SK 
model treats all the replicas indistinguishably. Fortunately, Parisi 
[26–30] came out with a replica symmetry breaking (RSB) scheme 
which removes the unphysical negative entropy. However, it was 
found to be at least marginally stable. Although there are some 
success in using these models to understand the behaviors of the 
spin glass, they are unable to account for all the experimental 
results shown. One possible reason is that these theories are clas-
sical in nature and did not consider the quantization of the spins 
of the impurities [16]. Nevertheless, new insights and mathemati-
cal tools developed in this field have been found to be applicable 
in other areas of condensed matter [6,5,31], complex optimiza-
tion problems [32] and biological problems [33]. Over the recent 
years, LiHoxY1−xF4 which can be described with a quantum Ising 
spin glass model has been experimentally and numerically studied 
[34–39]. For an x concentration of ≤0.25, it is believed that a spin 
glass phase exists. However, it is still an open question of whether 
a spin glass or an antiglass spin phase exists at lower concentra-
tion.

The theory of entanglement has been studied and used in both 
quantum information theory and condensed matter physics. In 
condensed matter physics, entanglement has been used to study 
the phase transitions of spin chain at low and finite temperature 
[40]. For a quantum phase transition, the change occurs at zero 
temperature where only the quantum fluctuations are involved and 
not the thermal counterpart. Numerous studies were carried out 
in investigating the role of entanglement in the proximity of quan-
tum critical point for the different spin chain models [40–50]. In 
quantum information theory, entanglement is viewed as an im-
portant resource in applications such as quantum key distribu-
tion, quantum teleportation, quantum dense coding, entanglement 
swapping and others [51–58]. In particular with the application of 
entanglement in spin chains, density-matrix renormalization group 
(DMRG) approach has been utilized to understand the quantum ef-
fects for finite spin chain [59–64]. Even though such approach has 
been useful and accurate in describing the ground states for finite 
chain especially for one dimensional case, it is numerical in na-
ture and not many works have studied using DMRG for spin glass. 
Other works have focused on using the Kadanoff block approach
in understanding the renormalization of entanglement and phase 
diagram for the various spin model [65–68]. Since Kadanoff block 
allows one to investigate the critical behavior of the spin chain an-
alytically, one would be curious to know if it could help us in using 
this approach to better understand the physics of spin glass. With 
this motivation, we use the Kadanoff block approach to obtain the 
scaled couplings from the effective Hamiltonian of the renormal-
ized XXZ Heisenberg with Dzyaloshinskii–Moriya (DM) interaction 
and the Ising model with transverse field (ITF). With these new 
effective Hamiltonians containing the renormalized couplings, we 

investigate the entanglement of these models to finite chain with 
increasing renormalized group (RG) iterations. The effective cou-
plings are then used to explore the behavior of a spin glass for 
finite chain.

The paper is organized as follows. We begin in Section 2 by 
defining the Hamiltonian for an XXZ Heisenberg model with DM 
interaction. Using this model, we defined a single RG block and 
the effective Hamiltonian expressed in terms of the new renormal-
ized coupling constant J z

i and the DM interaction D . In addition, 
we also look at the Ising model and obtained the new renormal-
ized coupling constant J and the applied magnetic field B . For 
both models, we use the Kadanoff block approach to find the pro-
jection of each operators in the renormalized space and obtain 
the projected intra- and inter-block for the new effective Hamil-
tonian. With the use of a bipartite measure, we use the renor-
malized expressions to compute the entanglement (concurrence) 
for the block. With iteration of nth steps, we trace the RG flow 
and reached a steady point for finite size of spin chain. By using 
the rescaled renormalization equations, we explore how the con-
currence changes with each iteration for the case of a spin glass 
where the couplings is subject to a Gaussian distribution. These 
results are presented and discussed in Section 3. In Section 4, we 
summarize our results.

2. Theoretical formulation for RG approach

2.1. X X Z Heisenberg model with DM interaction

In this subsection, we show how the Kadanoff approach is used 
in obtaining the renormalized couplings by comparing the inter-
and intra-block of an XXZ Heisenberg spin chain. The renormal-
ized couplings are obtained by building the projection operators 
on each block and projecting each block onto the lower energy 
subspace. The projected inter- and intra-block are mapped to an 
effective Hamiltonian which can then be compared to the original 
Hamiltonian. The XXZ Heisenberg model with the DM interaction 
in the z direction for N sites is in general given as

HXXZ = J

4
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where J is the constant coupling between the individual sites in 
the XXZ periodic chain and σα

i is the Pauli matrices (α = x, y, z)
for the ith spin [40]. The D term stands for the strength of the DM 
interaction along z axis and the easy-axis anisotropy is represented 
with J z

i which is random. The J z
i are quenched random variables 

with a probability distribution P ( J z
i ) = 1√

2π�
e−( J z

i −μ)2/2�2
where 

� is the standard deviation for the distribution. In general, the 
effective Hamiltonian H ′ is

H ′ = H ′
B + H ′

B B (2)

where H B represents the Hamiltonian for the intra-block after pro-
jection and H B B represents the Hamiltonian for the inter-block 
after projection. We find the effective Hamiltonian by considering 
three qubits as a single block H B . The coarse graining of the de-
grees of freedom – from 3 sites for each single block is converted 
into a single site which in return form another single block with 
other 2 sites. This process of coarse graining is shown in Fig. 1(f). 
In order to take into account the J z

i coupling between the third 
and forth site, we need to consider the effective Hamiltonian for 
two single blocks. The first single intra-block I which consists of 
the first three sites is
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