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We show that a discrete tight-binding model representing either a random or a quasiperiodic array of 
bonds can have the entire energy spectrum or a substantial part of it absolutely continuous, populated 
by extended eigenfunctions only, when atomic sites are coupled to the lattice locally, or non-locally from 
one side. The event can be fine-tuned by controlling only the host–adatom coupling in one case, while 
in two other cases cited here an additional external magnetic field is necessary. The delocalization of 
electronic states for the group of systems presented here is sensitive to a subtle correlation between the 
numerical values of the Hamiltonian parameters – a fact that is not common in the conventional cases 
of Anderson localization. Our results are analytically exact, and supported by numerical evaluation of the 
density of states and electronic transmission coefficient.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Electronic wave functions in a disordered lattice exhibit an ex-
ponentially localized envelope in space – a phenomenon, com-
monly known as the Anderson localization [1–4]. The problem has 
kept itself alive over all these years in condensed matter physics, 
and has given quantum transport properties of disordered systems 
intriguing twists and turns. The recent development of fabrication 
and lithographic techniques has taken the phenomenon of Ander-
son localization beyond the electronic systems, substantiated by 
remarkable experiments incorporating localization of light [5,6], 
ultrasound in three-dimensional elastic networks [7], or even plas-
monic [8,9] and polaritonic [10,11] lattices. Direct observation of 
the localization of matter waves [12–16] in recent times has made 
the decades old phenomenon even more exciting.

The key point in Anderson localization is the dimensionality. 
Within the tight binding approximation, the electronic wave func-
tions are localized for dimensions d ≤ 2 (the band center in the off 
diagonal disorder case is an exception). For d > 2 with strong dis-
order, the wave function decays exponentially [2,3]. Extensive anal-
yses of the localization length [17,18], density of states [19], and 
multi-fractality of the single particles states [20,21] have consoli-
dated the fundamental ideas of disorder induced localization. Intri-
cacies of the single parameter scaling hypothesis – its validity [22], 
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variance [23], or even violation [24,25] in low dimensional sys-
tems – provided the finer details of the localization phenomenon 
that have subsequently been supported by experimental measure-
ments of conductance distribution in quasi-one-dimensional gold 
wires [26].

However, in low dimensions, or more specifically, in one-
dimensional disordered lattices even a complete delocalization of 
electronic states can be seen. This path breaking result was initially 
put forward by Dunlap et al. [27] in connection with a sudden 
enhancement of conductance of a class of polyanilenes on proto-
nation. Known as the random dimer model (RDM) the phenomenon 
is attributed to certain special kinds of positional correlation in 
the potential profiles. The investigation of delocalization of eigen-
states in correlated disordered models was taken up further over 
the years and interesting results such as the relation of local-
ization length with the density of states [28] were put forward. 
The work extended to quasi-one-dimensional systems as well for 
which the Landauer resistance and its relation to the localization 
length was examined in detail [29] for a two-leg ladder model, 
an extensive extension of which was later done by Sedrakyan et 
al. [30]. Controlled disorder induced localization and delocaliza-
tion of eigenfunctions took a considerable volume in contemporary 
literature, exploring solid non-trivial results involving electron or 
phonon eigenstates [31–33]. Extended eigenfunctions in all such 
works mostly appear at special discrete set of energy eigenvalues.

Eventually, the possibility of a controlled engineering of spec-
tral continuum populated by extended single particle states and 
even a metal–insulator transition in one, or quasi-one-dimensional
discrete systems have also been discussed in the literature [34–36]. 
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But, on the whole, the general exponentially localized character of 
the eigenfunctions prevails, and the possibility of having a mixed 
spectrum of localized and extended states in a disordered system 
(under some special positional correlations) is now well estab-
lished.

Can one generate, going beyond the RDM, a full band of only 
extended eigenfunctions in a disordered system with d ≤ 2? If 
yes, what would be the minimal models capable of showing such 
unusual spectra? This is the question that we address to our-
selves in the present communication. We put forward examples 
of a class of essentially one-dimensional disordered and quasiperi-
odic lattices where a complete delocalization of electronic states can 
be engineered, and absolutely continuous bands can be formed in 
the energy spectrum. This is shown to be possible when an infi-
nite disordered or quasiperiodic array of two kinds of ‘bonds’ is 
side coupled to a single or a cluster of quantum dots (QD) from 
one side at a special set of vertices. Minimal requirements are 
discussed in detail. In some of the examples cited here, the at-
tachment of the dots form local loops which can be pierced by 
a constant magnetic field, breaking the time reversal symmetry of 
electron-hopping only locally, along the edges of such closed loops. 
The engineering of bands of extended states is shown to be the re-
sult of a definite numerical correlation in the values of the electron 
hopping amplitude along the chain (backbone) and the coupling of 
the linear backbone with the side coupled dots, the strength of the 
magnetic field or both.

It should be mentioned that an early report of an RDM-kind of 
correlation leading to extended eigenfunctions in a Fibonacci su-
perlattice was put forward by Kumar and Ananthakrishna [37]. The 
insight into the phenomenon was immediately provided by Xie 
and Das Sarma [38]. However, the fact that certain specific numer-
ical relationship among a subset of parameters of the Hamiltonian 
is capable of producing, absolutely continuous bands of extended 
eigenfunctions is uncommon and, to the best of our knowledge, 
has not been addressed until very recently [39].

We consider two bonds A and B arranged along a line forming 
an infinite linear chain. The sequence of the bonds may be random 
or quasiperiodic [40], offering either a pure point spectrum or a 
singular continuous one. The bonds connect identical atomic sites, 
an infinite subset of which is coupled to similar atoms (mimicing 
single level quantum dots (QD)) from one side giving the system a 
quasi one-dimensional flavor. The disorder (or, quasiperiodic order) 
thus has a topological character. In addition to the basic interest of 
going beyond the RDM, two other facts motivate us in undertaking 
such a work.

First, the Fano–Anderson effect [41,42] caused by the insertion 
of a bound state into a continuum is an exciting field, and has been 
investigated recently in nanoscale systems [43]. In this context, our 
study provides examples where one can observe at least one effect 
of inserting multiple bound states, in fact, an infinity of them in a 
singular continuum, or a pure point spectrum.

Second, the present advanced stage of growth techniques has 
motivated in depth studies of quasiperiodic nanoparticle arrays 
in the context of ferromagnetic dipolar modes [44] or plasmon 
modes [45]. Also, the use of a scanning tunnel microscope (STM) 
tip to fabricate structures atom by atom, viz., Xe on Ni sub-
strates [46], or nanometer size gold particles on metals [47], or, 
putting individual atoms of Si substrate [48] has stimulated a lot 
of work in this field [49,50]. Our results can motivate future exper-
iments in this direction.

In Section 2 we describe the lattice models. In Section 3, within 
Subsections 3.1 and 3.2 the local, non-local and the mixed cases 
introduced in Section 2 are discussed, with explicit remarks on 
the density of states profiles in each case. Subsection 3.3 specially 
deals with the special case of a Fibonacci quasiperiodic chain, using 
a real space renormalization group (RSRG) scheme. Section 4 de-

Fig. 1. (Color online.) Building blocks of the quasi-one-dimensional lattices described 
in the text. In each case the backbone is a linear array of two kinds of bonds A
(double line) and B (red single line), such that a B-bond is always flanked by two 
A-bonds on either side. The atomic sites on the backbone are marked as α, β and 
γ as described in the picture. The hooping integrals are appropriately described 
by t A and tB . (a) A QD (D) is locally connected to the α-site. This D–α cluster is 
“renormalized” into an effective site (yellow circle surrounded by red dotted lines). 
(b) A QD (D) is non-locally coupled to the β–γ pair. The D–β–γ cluster is then 
renormalized into the immediate lower geometry, pointed by the arrow. (c) The 
QDs D1 and D2 exhibit a mixed connection to β–γ pair. The block β–D1–D2–γ is 
renormalized to the diatomic molecule shown by the arrowhead. In every case, the 
linear chain (disordered or quasiperiodic) is formed by arranging the cluster linked 
by the bent cyan double arrowheads in the desired order.

scribes the two terminal transmission coefficient, while Section 5
provides a critical discussion on the evolution of the parameter 
space under the RSRG scheme and its relation with the extend-
edness of the wave function. In Section 6 we briefly point out a 
triplet of other geometries which are less restrictive compared to 
the ones discussed here, and in Section 7 we draw our conclusion.

2. The model

We refer the reader to Fig. 1 where the basic structural units 
are displayed. The backbone in each case is an infinite array of a 
single (red) bond B and a double bond A. We shall restrict our-
selves to a geometry where the single ‘B ’ bonds do not come pair-
wise. Thus we have a kind of ‘anti-RDM’ here. This is not always 
needed though, as will be discussed in the concluding section.

Three cases are separately discussed. The simplest one is that 
of a local connection (LC), where a single QD (marked as D in 
Fig. 1(a) is tunnel-coupled to a site α flanked by two A-bonds. The 
second case discusses a non-local connection (NLC), where a QD 
(D) is tunnel-coupled to both the sites residing at the extremities 
(β and γ in Fig. 1(b)) of a B-bond. The final geometry describes 
a mixed connection (MC), where two inter-coupled QDs D1 and 
D2 are connected to the extremities of a B-bond (i.e. to β and 
γ sites) as shown in Fig. 1(c). In the two latter cases a uniform 
magnetic field is applied in a direction perpendicular to the plane 
of every closed loop. The system in each case is described by a 
tight-binding Hamiltonian.

We show that, for a particular algebraic relationship between 
the nearest-neighbor hopping integrals ti j along the backbone 
and the backbone-QD coupling λ, the infinite topologically disor-
dered or quasiperiodic chain of scatterers yields absolutely contin-
uous energy bands in the spectrum. In the case of LC (Fig. 1(a)) 
there will be two continuous subbands. In the NLC and MC cases 
(Figs. 1(b) and 1(c)) a single absolutely continuous band spans the 
entire energy spectrum when, in addition to the algebraic rela-
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