

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

First-principles calculations of the dielectric and vibrational properties of ferroelectric and paraelectric BaAl₂O₄

Congwei Xie^a, Qingfeng Zeng^{a,*}, Dong Dong^a, Shuang Gao^a, Yongqing Cai^b, Artem R. Oganov^{c,d,e}

^a Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

^b Institute of High Performance Computing, 1 Fusionopolis Way, Singapore 138632, Singapore

^c Department of Geosciences, Center for Materials by Design, and Institute for Advanced Computational Science, State University of New York, Stony Brook,

NY 11794-2100, USA

^d Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia

^e School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

ARTICLE INFO

Article history: Received 12 December 2013 Received in revised form 17 April 2014 Accepted 24 April 2014 Available online 1 May 2014 Communicated by R. Wu

Keywords: First-principles Dielectric properties BaAl₂O₄ polymorphs Transparent materials

1. Introduction

ABSTRACT

First-principles calculations have been conducted to study the structural, dielectric, and vibrational properties of ferroelectric and paraelectric BaAl₂O₄. High-frequency and static dielectric constants, and phonon frequencies at the Brillouin zone center are reported. Both BaAl₂O₄ polymorphs are promising infrared-transparent materials due to their low electronic dielectric constants. The ferroelectric and paraelectric BaAl₂O₄ have much smaller permittivity compared to the classical ferroelectric materials. From an atomic nanostructure standpoint, the abnormally low permittivity of BaAl₂O₄ polymorphs is mainly related to low coordination numbers of Ba (9) and Al (4).

© 2014 Elsevier B.V. All rights reserved.

BaAl₂O₄ has attracted a great attention due to its intriguing optical properties and exciton effect evidenced by strong photoluminescence emission [1,2]. This material also shows excellent dielectric and pyroelectric properties. However, as a typical complex oxide, BaAl₂O₄ has a much smaller dielectric constant than classical ferroelectric materials like BaTiO₃ (average static dielectric constant can reach 2450 [3]). The origin of this unexpectedly low dielectric constant of BaAl₂O₄ is still unclear. Understanding the polarization mechanism and ionic contribution to the dielectric constant is critically important for its optoelectronic applications.

 $BaAl_2O_4$ exhibits a paraelectric–ferroelectric (PE–FE) phase transition over a wide temperature range (400–670 K) [4]. In both structures, corner-sharing AlO₄ tetrahedra form a three-dimensional network with hexagonal channels which are filled with Ba^{2+} cations [4,5]. The crystal structure of low-temperature FE phase has been determined by single-crystal [6] and powder [7] X-ray diffraction, respectively. The FE phase adopts a hexagonal structure (space group P6₃) [6,7]. The crystal structure of the PE phase was proposed by Huang et al. [7], who suggested that PE phase has a P6₃22 symmetry, which was confirmed by high resolution electron microscopy study performed by Abakumov et al. [4].

First-principles calculations are capable of predicting the material properties using no empirical data, and this gives the promise to speed up materials research [8,9]. This work aims to investigate the dielectric and vibrational properties of BaAl₂O₄ polymorphs using first-principles calculations. The crystal structures of FE and PE phases in this study are from the data of Huang et al. [7] and Abakumov et al. [4], respectively.

2. Computational methodology

The present first-principles calculations were carried out using the CASTEP code [10] with norm-conserving pseudopotentials [11]. Modified Perdew–Burke–Ernzerhof GGA functional for solids (PBEsol) [12] was applied to describe the exchange and correlation potentials. The kinetic energy cutoff for the plane waves was 900 eV. To sample the Brillouin-zones, a $2 \times 2 \times 2$ ($5 \times 5 \times 3$) Monkhorst–Pack grid of *k*-points [13] was adopted for a primitive cell of FE phase (PE phase). The convergence tolerance of energy change, maximum force on each atom and stress of the optimized

^{*} Corresponding author. Tel.: +86 29 88495619; fax: +86 29 88494620. E-mail address: qfzeng@nwpu.edu.cn (Q. Zeng).

Compound	Space group (No.)	Lattice constants (Å)	Atom position (Wyckoff position)
FE-BaAl ₂ O ₄	Р6 ₃ (173)	a = 10.264 c = 8.656 a = 10.449 [7] c = 8.793 [7] a = 10.369 [1] c = 8.807 [1]	$\begin{array}{c} Ba1(2a) \ (0, \ 0, \ 0.247)\\ Ba2(6c) \ (0.506, \ 0.005, \ 0.258)\\ Al1(6c) \ (0.157, \ 0.332, \ 0.063)\\ Al2(6c) \ (0.155, \ 0.329, \ 0.451)\\ Al3(2b) \ (1/3, \ 2/3, \ 0.947)\\ Al4(2b) \ (1/3, \ 2/3, \ 0.550)\\ O1(6c) \ (0.180, \ -0.002, \ 0.984)\\ O2(6c) \ (0.686, \ -0.001, \ 0.039)\\ O3(6c) \ (0.497, \ 0.184, \ -0.006)\\ O4(6c) \ (0.181, \ 0.501, \ 1.002)\\ O5(6c) \ (0.121, \ 0.324, \ 0.257)\\ O6(2b) \ (1/3, \ 2/3, \ 0.749)\\ \end{array}$
PE-BaAl ₂ O ₄	P6 ₃ 22 (182)	a = 5.113 c = 8.730 a = 5.224 [4] c = 8.793 [4]	Ba(2b) (0, 0, 1/4) Al(4f) (1/3, 2/3, 0.054) O1(6g) (0.359, 0, 0) O2(2c) (1/3, 2/3, 1/4)

 Table 1

 Optimized lattice constants and the internal atom coordinates of the FE-BaAl₂O₄ and PE-BaAl₂O₄.

structure was 1×10^{-5} eV/atom, 0.01 eV/Å, and 0.05 GPa, respectively.

The calculation of vibrational and dielectric properties were performed using density functional perturbation theory (DFPT) [14]. Γ -phonon frequencies and dielectric tensors were computed as second derivatives of the total energy with respect to atomic displacements or external electric field [15,16]. The longitudinal-optical/transverse-optical (LO/TO) splitting of zone center optical modes was investigated parallel and perpendicular to the (001) direction approaching to Γ -point.

3. Results and discussions

3.1. Structure optimization

The crystal structure of FE-BaAl₂O₄, containing 56 atoms in its unit cell, is a hexagonal structure with space group P6₃. Figs. 1a and 1b represent b-c and a-b plane of the unit cell, respectively. Three-dimensional tridymite-like framework is made of AlO₄ tetrahedra with Ba atoms situated in the hexagonal channels. The structure of the FE-BaAl₂O₄ contains four symmetrically inequivalent Al atoms with clearly distinct coordination environment (Fig. 1c). Both the (Al3)O₄ tetrahedron and (Al4)O₄ tetrahedron have a three-fold symmetry axis, and the two tetrahedra share the same oxygen atom (O6). The (Al3)-(O6)-(Al4) bond angle is 180°. At the same time, the $(A11)O_4$ and $(A12)O_4$ tetrahedra are distorted, and the (Al1)-(O5)-(Al2) bond angle is 155.3°. Figs. 2a and 2b show that the *b*-*c* and *a*-*b* plane of the $2 \times 2 \times 1$ superstructure of PE-BaAl₂O₄, respectively. PE- and FE-BaAl₂O₄ display groupsubgroup relations: their structural topology is the same, with the FE phase being symmetry-broken. FE-BaAl₂O₄ also has a larger cell (a $2 \times 2 \times 1$ supercell of PE-BaAl₂O₄). All Ba atoms in PE-BaAl₂O₄ are symmetrically equivalent. All Al atoms in PE-BaAl₂O₄ are also symmetrically equivalent and the (Al)-(O2)-(Al) bond angle is 180° (Fig. 2c).

Computed structural parameters of both phases are listed in Table 1 and values from other reports are also listed for comparison. Our calculated lattice constants of FE-BaAl₂O₄ are close to the experimental results [7] and other calculated results obtained by using GGA-PBE [1]. The present structural parameters of PE-BaAl₂O₄ are also comparable to the experimental results [4].

3.2. Electronic dielectric constants

Due to the anisotropic hexagonal symmetry of the $BaAl_2O_4$, the calculated dielectric tensor has two independent components

Fig. 1. Crystal structure of FE-BaAl₂O₄: (a) b-c plane of the unit cell, (b) a-b plane of the unit cell, and (c) coordination environments of Al atoms in the FE-BaAl₂O₄.

Fig. 2. Crystal structure of PE-BaAl₂O₄: (a) b-c plane of the $2 \times 2 \times 1$ supercell, (b) a-b plane of the $2 \times 2 \times 1$ supercell, and (c) coordination environments of Al atoms in the PE-BaAl₂O₄.

 $\varepsilon_{\perp c}$ and $\varepsilon_{\parallel c}$ (perpendicular to and parallel to the *c* axis). Our present values of the electronic dielectric constants are $\varepsilon_{\infty,\perp c} = 3.12$ and $\varepsilon_{\infty,\parallel c} = 3.13$ for FE-BaAl₂O₄. The average permittivity $\bar{\varepsilon}_{\infty}$, obtained from the expression $\bar{\varepsilon}_{\infty} = (2\varepsilon_{\infty,\perp c} + \varepsilon_{\infty,\parallel c})/3$, is 3.12. The calculated values of $\varepsilon_{\infty,\perp c}$, $\varepsilon_{\infty,\parallel c}$ and $\bar{\varepsilon}_{\infty}$ for PE-BaAl₂O₄ are 3.12, 3.14 and 3.13, respectively, which are similar to those of FE-BaAl₂O₄.

Using the electronic dielectric constants, we can obtain some other properties such as the index of refraction *n*, the reflectivity *R*, and the optical transmittance *T*. These properties can also help us to confirm the accuracy of our calculations. For nonmagnetic materials, the index of refraction *n* and reflectivity *R* of BaAl₂O₄ can be calculated by $n = \varepsilon^{1/2}$ and $R = (n - 1)^2/(n + 1)^2$, respectively.

Download English Version:

https://daneshyari.com/en/article/1859187

Download Persian Version:

https://daneshyari.com/article/1859187

Daneshyari.com