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A new class of partially coherent pulse sources with Multi-Gaussian Schell-model (MGSM) correlations is
proposed. The expression for the intensity distribution for the MGSM pulses generated by such sources on
propagation through the dispersive media is derived. It is demonstrated that the pulse intensity profile, in
particular, the width of the flat center of pulse intensity profile and the peak intensity, can be controlled
by adjusting the source temporal coherence. The obtained results have potential applications in pulse
shaping for communication and media sensing or pulsed laser material processing.
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1. Introduction

It is well known that the far-field intensity distribution of a
partially coherent source is closely related to the structure of the
correlation function of the field in the source plane [1]. Tradi-
tionally, most of the characterizations on the correlation func-
tion of the field in the source plane are confined to the Gaus-
sian Schell-model correlations [2]. Recently, the classic family of
Gaussian Schell-model sources has been augmented by other mod-
els, such as, the J0-correlated Schell-model sources [3,4], the
non-uniformly correlated sources [5,6], the Bessel–Gaussian Schell-
model sources, the Laguerre–Gaussian Schell-model sources [7],
the cosine-Gaussian Schell-model sources [8–11], and the Multi-
Gaussian Schell-model sources [12–16]. The beams generated by
these sources have revealed many interesting and useful features
in propagation. For instance, the intensity profile of beams origi-
nated by J0-correlated Schell-model sources have properties anal-
ogous to those of the Bessel–Gaussian beams but the degree of
coherence does not preserve the J0(x) profile nor shift-invariance
[4]; the beams generated by non-uniformly correlated light sources
hold self-focusing and lateral shifts of the beam intensity maxima
in free-space propagation [5]; the Bessel–Gaussian and Laguerre–
Gaussian Schell-model sources are capable of producing far fields
with ring-shaped intensities [7]; the far-field spectral density pro-
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duced by the cosine-Gaussian Schell-model sources takes on the
dark-hollow profile [8,11]; both the Multi-Gaussian Schell-model
(MGSM) beams in free-space propagation and MGSM beams scat-
tered by random media can generate far fields with tunable flat
profiles, whether circular [12,15] or rectangular [17]. The vast ma-
jority of above investigations have been concerned with stationary
beams or light sources.

On the other hand, based on the theory of coherence for non-
stationary light fields, statistical optical pulses represent a wide
class of partially coherent fields that find numerous applications
in optical imaging, fiber optics, optical telecommunications, etc.
[18]. In recent years, the influence of the temporal coherence prop-
erties on the evolution of pulses upon propagation has received
widespread attention [19–32]. It was revealed that the pulse du-
ration increases upon propagation with decreasing temporal co-
herence in dispersive media [26], the temporal coherence affects
extent of variations of the degree of polarization in optical fibers
[28] and the ghost interference can be achieved using tempo-
rally partially coherent light pulses [29]. However, in most of the
above studies concerning the coherence properties of pulses, the
classical Gaussian Schell-model correlations have been adopted
to describe the temporal coherence of optical pulse. Only a few
papers have been devoted to the propagation of partially coher-
ent pulses with non-Gaussian Schell-model correlations distribu-
tion, in which some interesting characteristics have been presented
[33–35].

In this Letter, we consider the propagation of the MGSM pulses
in dispersive media, where the temporal degree of coherence of
the pulses does not satisfy Gaussian distribution and is modeled
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by Multi-Gaussian distribution. Our aim is to explore the influence
of Multi-Gaussian Schell-model distribution of temporal coherence
on the pulse intensity profile on propagation. We have found that
the pulse intensity profile, i.e. the width of the flat center of
the pulse intensity profile and the peak intensity, can be controlled
by adjusting the summation index M in the Multi-Gaussian func-
tion.

2. Theoretical model

In the space–time domain the coherence properties of the
pulses can be defined by their mutual coherence function
Γ (t1, t2) = 〈E∗(t1)E(t2)〉, where E(t) represents the complex an-
alytic signal of pulse realizations at time t , and the angle brackets
denote the ensemble average. In general, for a mutual coherence
function to be genuine, i.e. physically realizable, Γ (t1, t2) must cor-
respond to a non-negative definite kernel [2]. As has been shown
for the correlation functions in the spatial domain [36], a sufficient
condition for the non-negative definiteness is that the mutual co-
herence function must be expressed as a superposition integral of
the form

Γ (t1, t2) =
ˆ

p(v)H∗(t1, v)H(t2, v)dv. (1)

In order to introduce an ensemble of MGSM pulses, we choose
p(v) and H as follows
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pulse duration. Substituting Eqs. (2) and (3) into Eq. (1), we obtain
the mutual coherence function of the Multi-Gaussian Schell-model
pulses as follows
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Eq. (5) denotes the temporal degree of coherence of the MGSM
pulses at two instants of time, t1 and t2, in the source plane. It is
a kind of extension from traditional Gaussian degree of coherence
γ (t1, t2) = exp[−(t2 − t1)

2/2T 2
c ] which can be derived by letting

M = 1 in Eq. (5). Formally, Eq. (5) is similar with the spectral de-
gree of coherence of stationary MGSM beams proposed by S. Sahin
and O. Korotkova in Ref. [12]. As is illustrated in Fig. 1, the profile
function defined by Eq. (5) visually resembles a Bessel-correlated
source or a Lambertian source; however, it is defined by a different
functional form, i.e. Multi-Gaussian function.

We will now investigate the propagation of the MGSM pulses
in a second-order dispersive medium. Propagation of the mu-
tual coherence function in the dispersive media can be character-
ized by the generalized Collins formula in the temporal domain
[20,37]

Fig. 1. (Color online.) Illustration of the temporal degree of coherence of the MGSM
pulses calculated from Eq. (5) as a function of the non-dimensional parameter
(t1 − t2)/Tc for several values of M: M = 1 (solid curve); M = 4 (dashed curve);
M = 10 (dotted curve), and M = 40 (dotted–dashed curve).
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where A, B , C , and D are the elements of the temporal matrix
of the dispersive media. Here we have assumed that the time co-
ordinate is measured in the reference frame moving at the group
velocity of the pulses.

The temporal matrix for the second-order dispersive medium of
length z is given as [20,37](
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)
=
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where β2 represents the group velocity dispersion coefficient.
On substituting from Eqs. (7) and (4) into Eq. (6), after tedious

integral calculations we obtain the following analytic formula of
the mutual coherence function of the MGSM pulses propagating in
dispersive media
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Thus, the pulse intensity can be obtained by the expression

I(t, z) = Γ (t, t, z)
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The analysis of Ref. [12] describes the evolution of the wide-
sense statistically stationary fields that are radiated by a source
with the 2D MGSM spatial coherence function. In this paper the
novel random pulse is proposed, in which case the 1D tempo-
ral coherence function is imposed in the source, while the spatial
characteristics of the field can be chosen at will. It is seen that
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