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We show that two, non-interacting, infinitely long spin chains can become globally entangled at the
mesoscopic level of their fluctuation operators through a purely noisy microscopic mechanism induced
by the presence of a common heat bath. By focusing on a suitable class of mesoscopic observables, the
behaviour of the dissipatively generated quantum correlations between the two chains is studied as a
function of the dissipation strength and bath temperature.
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The presence of an external environment, typically a heat bath,
modifies the dynamics of quantum systems in interaction with it,
leading in general to loss of quantum correlations due to deco-
hering and mixing-enhancing effects [1]. Nevertheless, it has also
been established that suitable environments can enhance quantum
entanglement instead of destroying it [2].

This mechanism of environment induced entanglement genera-
tion has been extensively studied for systems made of few qubits
or oscillator modes [3], and specific protocols have been proposed
to prepare predefined entangled states via the action of suitably
engineered environments [4].

Instead, in this paper, we study the possibility that entangle-
ment be created through a purely noisy mechanism in many-body
systems. In a quantum system made of a large number N of con-
stituents, accessible observables are collective ones, i.e. those in-
volving the degrees of freedom of all its elementary parts. For
these “macroscopic” observables, one usually expects that quan-
tum effects fade away as N becomes large, even more so when
the many-body system is in contact with an external environment.
This is surely the case for the so-called “mean field” observables,
i.e. averages over the whole system of microscopic operators; these
quantities scale as 1/N and as such behave as classical observables
when the number of system constituents becomes large.

Nevertheless, other collective observables exist that scale as
1/

√
N and that might retain some quantum properties as N in-

creases [5–7]. These observables have been called “fluctuation op-
erators”, since, as we shall see, they physically represent some
sort of deviations from mean values. The set of all these fluctu-
ation operators form an algebra that, irrespective of the nature of
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the microscopic many-body system, turns out to be always non-
commutative and of bosonic type, thus showing a quantum be-
haviour. Being half-way between microscopic observables (as for
instance the individual spin operators in a generic spin systems)
and truly macroscopic ones (e.g. the corresponding mean magneti-
zation), the fluctuation operators have been named “mesoscopic”:
they are the place where to look for truly quantum signals in the
dynamics of “large” systems, i.e. in systems in which the number
of microscopic constituents is let to arbitrarily grow at fixed den-
sity (thermodynamical limit).

Although the characteristics and time evolution of the fluctu-
ation algebra have been extensively studied in many systems [6],
very little is known of its behaviour in open many-body systems,
i.e. in systems immersed in an external bath. This is the most
common situation encountered in actual experiments, typically in-
volving cold atoms, optomechanical or spin-like systems [8,9], that
can never be thought of as completely isolated from their ther-
mal surroundings. Actually, the repeated claim of having detected
“macroscopic” entanglement in those experiments [10,11] poses a
serious challenge in trying to interpret theoretically those results
[12,13].

Motivated by these experimental findings, in the following we
shall show that quantum behaviour can indeed be present at the
mesoscopic level in open many-body systems provided suitable
fluctuation operators are considered and, even more strikingly, that
entanglement can be induced in mesoscopic observables by the
presence of the external bath.

We shall consider a many-body system composed of two spin-
1/2 chains, one next to the other, immersed in a heat bath at a
given inverse temperature β = 1/T . Each site of this double chain,
actually composed of the corresponding couple of sites in the
two chains, will be labelled by an integer k = 1,2, . . . , N . In this
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situation, the thermodynamical limit corresponds to letting the to-
tal number of sites N going to infinity.

A spin algebra M, corresponding to the tensor product of
two spin-1/2 algebras, is attached to each site; its elements at
site k, x(k) ∈ M(k) , are then of the form x(k) = x(k)

1 ⊗ x(k)
2 , where

x(k)
1 , x(k)

2 are spin algebra elements pertaining to the first, second
chain, respectively. The algebra M clearly coincides with the al-
gebra of 4 × 4 complex matrices and a convenient basis in it is
given by σμ ⊗ σν , μ,ν = 0,1,2,3, where σi , i = 1,2,3 are the
usual Pauli matrices, while σ0 is the unit matrix. For any finite
set I of contiguous sites, one defines the finite-size tensor algebra
AI = ⊗

k∈I M(k); the union A of all these algebras, A = ⋃
I AI ,

is called the quasi-local algebra and the observables of the system
clearly belong to it.

A state ω for the system is a linear, positive, normalized func-
tional on the algebra A, ω : A → C, assigning the expectation
value ω(X) to each elements X of A. For finite N , it can be rep-
resented by a density matrix ρ through the identification ω(X) =
Tr[ρ X]; however, since we are interested in the thermodynami-
cal limit, it is more convenient to work in the abstract algebraic
formulation [14].

Since the two chains can be thought to be initially at equilib-
rium with the bath, as reference state for our system we take a
product state

ω = ω(1) ⊗ ω(2) ⊗ ω(3) ⊗ . . . , (1)

where ω(k) , k = 1,2,3, . . . , are single site states, that for sim-
plicity can be assumed to be all equal to a reference thermal
state, at the bath temperature. As a consequence, ω has the prop-
erty that given two observables x(k) , y(l) at different sites, k �= l,
then: ω(x(k) y(l)) = ω(x(k))ω(y(l)); this means that in practice ω
is uniquely defined by the expectation values on all observables
x ∈M at one site of the double chain, that in the following will
be simply called ω(x).

Most of the physical properties of many-body systems can be
obtained by focusing on collective observables, i.e. on operators
involving all system degrees of freedom, which, in the present
situation, means combinations of spin variables at all N sites. In
the thermodynamical limit, i.e. when N becomes infinitely large, a
suitable scaling with N needs to be included in the definition of
these observables in order to obtain meaningful limiting operators.

A well-known example of such observables is given by the av-
erages over all sites of a given spin operator x ∈M:

X N = 1

N

N∑
k=1

x(k). (2)

As N grows, the sequence of operators {X N } converges to the
“macroscopic” observable X = limN→∞ X N . This convergence
should be intended in the weak sense, i.e. under state average.1

In the case of the product state (1), this limit is easily computed:

lim
N→∞ω(X N) = lim

N→∞
1

N

N∑
k=1

ω
(
x(k)

) = ω(x),

since the expectations ω(x(k)) are all equal and independent of k.
In practice, one obtains [5]

X = lim
N→∞ X N = ω(x)1, (3)

1 More precisely, weak convergence means that, given any couple of local op-
erators Y and Z having support only on a finite number of sites, the sequence
ω(Y X N Z) converges in the limit of large N; because of the assumed form of the
state ω, one further has: limN→∞ ω(Y X N Z) = ω(Y Z)ω(x), and thus limN→∞ X N =
ω(x)1.

with 1 the identity operator. As a result, the set of all these limit-
ing operators form an abelian algebra, since all operators commute
among themselves; it is called the mean field algebra and it is
known to represent the classical behaviour of the system.

Nevertheless, some of the system quantum properties can sur-
vive even in the large N limit: they are encoded in the so-called
fluctuation operators. These are collective observables that scale as
the square root of N ,

X̃ = lim
N→∞ X̃N ≡ lim

N→∞
1√
N

N∑
k=1

[
x(k) − ω

(
x(k)

)]
, (4)

and represent a sort of deviation from (or fluctuation about) the
average. One easily sees that the commutator of two such fluctu-
ation observables is in general nonvanishing, since it is equal to a
mean field operator

[
X̃, Ỹ

] = lim
N→∞

[
X̃N , Ỹ N

] = lim
N→∞

1

N

N∑
k=1

[
x(k), y(k)

]
, (5)

being [x(k), y(l)] = 0 for k �= l. Recalling (3), this implies that [ X̃, Ỹ ]
is proportional to the identity operator, and therefore that the al-
gebra formed by all fluctuation operators possesses a quantum
character, being non-abelian.

The fluctuation algebra is clearly bosonic and look very similar
to the Heisenberg algebra of position and momentum operators;
as in that case, the algebra elements X̃ in (4) turn out to be un-
bounded operators, their norm diverging as

√
N in the thermody-

namical limit. To avoid convergence problems, it is then convenient
to work with the corresponding Weyl operators, limN→∞ ei X̃N ,
whose existence in the weak sense is guaranteed by the so-
called quantum central limit [5–7]. Indeed, defining the following
sesquilinear form on the algebra of fluctuations:〈
X̃, Ỹ

〉
ω

= lim
N→∞ω

(
X̃†

N Ỹ N
)
, (6)

one shows that, for any hermitian spin operator x, the following
result holds:

lim
N→∞ω

(
ei X̃N

) = e− 1
2 〈 X̃, X̃〉ω . (7)

Similarly, products of any number of Weyl operators can be analo-
gously computed; in particular, one has

lim
N→∞ω

(
ei X̃N eiỸ N

) = e− 1
2 (〈 X̃+Ỹ , X̃+Ỹ 〉ω+[ X̃, Ỹ ]), (8)

with[
X̃, Ỹ

] = 2i Im
(〈

X̃, Ỹ
〉
ω

)
1. (9)

In other terms, in the large N limit, the set of hermitian fluctuation
operators { X̃} form a well defined bosonic algebra, characterized
by the commutation relations (9). This algebra can be appropri-
ately described in terms of the Weyl operators W (x) = ei X̃ and
a suitable Gaussian state ω̃ reproducing all higher order correla-
tions2:

ω̃
(
W (x)W (y) . . .

) = lim
N→∞ω

(
ei X̃N eiỸ N . . .

)
. (10)

2 Given a state ω over an algebra of operators A, a standard procedure, the
so-called GNS construction [14], allows to build a Hilbert space Hω , generated by
a cyclic “vacuum” vector |Ωω〉, and a representation πω of A into the bounded
operators on Hω ; further, the expectation of any element X ∈ A is given by the cor-
responding vacuum mean value, i.e. ω(X) = 〈Ωω|πω(X)|Ωω〉. Therefore, the Weyl
correlations in (10) reproduce the mean value of any fluctuation observable in any
state of the corresponding Hilbert space.
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