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We study a behavior of two-qubit states subject to tomographic measurement. In this Letter we propose
a novel approach to definition of asymmetry in quantum bipartite state based on its tomographic
Shannon entropies. We consider two types of measurement bases: the first is one that diagonalizes
density matrices of subsystems and is used in a definition of tomographic discord, and the second is
one that maximizes Shannon mutual information and relates to symmetrical form quantum discord. We

show how these approaches relate to each other and then implement them to the different classes of
two-qubit states. Consequently, new subclasses of X-states are revealed.
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1. Introduction

In general, measurements irreversibly change a state of quan-
tum system. Quantum tomography is an experimental method,
which restores a complete information about an unknown quan-
tum state using preparation of set of its copies and measurements
statistics obtained in different bases.

The main feature of quantum tomography is a complete char-
acterization of quantum states and processes directly from exper-
imental data. Quantum states of light were completely character-
ized via the method of balanced homodyne detection (BHD) [1].
These works inspired series of new experiments [2] as well as in-
tensive theoretical work on analysis and improvement of the BHD
setup [2,3]. Moreover, quantum tomography was used for charac-
terization of quantum states of current (voltage) in the Josephson
junction [4].

On the other hand, quantum tomography is an original pic-
ture of quantum mechanics, where quantum states are described
in terms of nonnegative probability distributions functions [5-7].
Quantum tomography is equivalent to other approaches to quan-
tum mechanics, and tomograms are directly related to quasi-
probability distribution functions [8,9].

One of the areas, where quantum tomography is of interest,
is consideration of correlation properties in bipartite states. As a
results of purely probabilistic description of states, tomographic
version of the Shannon entropy [10] and the Rényi [11,12] entropy
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naturally appear. Being a bridge between classical information the-
ory and quantum information theory [13], it allows to use some
well-known inequalities for Shannon and Rényi entropies for in-
vestigation of novel properties of quantum states [10-14]. Recently,
tomographic approach to quantum discord was suggested [15].
In particular, tomographic discord for two-qubit X-states was con-
sidered. This analysis posed an important problem of relation be-
tween original [16] and tomographic discords.

Another interesting question, posed in Ref. [17], is about the
role of asymmetry between parties of bipartite state in respect to
its properties. Due to such asymmetry, decoherence acting on dif-
ferent parties leads to different rates of correlation decay, so the
question about robustness of parties appears. For the purpose of
asymmetry investigation the method of quantum causal analysis
was proposed [18]. It was successfully implemented to two- [19]
and three- [20] qubit states and atom-field interaction [21], where
interesting conclusions were made.

In the current Letter we combine quantum causal analysis with
quantum tomography. We obtain two novel measures of bipar-
tite state asymmetry, based on tomographic discord and symmet-
ric version [22] of quantum discord. We show that tomographic
discord is not greater than symmetric quantum discord. For a
demonstration of obtained results we consider the simplest case
of bipartite system, and show that even for them nontrivial phe-
nomena occur.

The Letter is organized as follows. We start from brief con-
sideration of quantum causal analysis in Section 2 and quantum
tomography in Section 3. In Section 4 we show how quantum
causal analysis can be modified via tomography. In Section 5 we
implement tomographic causal analysis different classes of two-
qubit states. The results of the Letter are summed up in Section 6.
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2. Quantum causal analysis

Quantum causal analysis [18-21] is a formal method for a
treatment of informational asymmetry between parties of bipartite
states. The term “causal” comes from classical causal analysis (see,
e.g. [23]), where a such asymmetry can be related to real causal
connection between two processes. In the quantum domain the
conception of causality usually is considered in framework of chan-
nels [24] or probability wave propagation [25]. Nevertheless, it is
convenient to introduce formal definitions of “causes” and “effects”
in bipartite states, however, one should understand them only as
labels.!

The idea of quantum causal analysis is the following. Con-
sider a bipartite quantum system AB in the Hilbert space H =
Ha ® Hp. It is described via density operator gap € $2(Hap) with
pa = Trp pag € 2(Ha) and pp = Tra Pag € 2(Hp) being corre-
sponding density operators of subsystems. Here £2(#) is the set
of positive operators of unit trace (density operators) in a Hilbert
space H. The basic quantity of quantum information theory is the
von Neumann entropy given by

Sx =S[px]=—Tr[pxlogpx], X e{A, B AB}.

Here we restrict our consideration to finite dimensional Hilbert
spaces and take the logarithm to base 2 (i.e., we measure entropy
in bits).

The amount of correlations between A and B is given by the
(symmetric) quantum mutual information

Iap=Sa+Sg—Sag, Iap=1Ipa. (1)

To describe a possible asymmetry of correlations we introduce
a pair of independence functions

Sap — SB 1 Iap

iAp = -
AlB S S,
. SaB—Sa Iap
igja= T =1- S5’

which have the following properties: (i) they take values from —1
to 1 and the less iy|x is, the stronger X defines Y (iy;x = —1 cor-
responds to maximal quantum correlations, iy;x = 0 corresponds
to Y being a classical one-valued function of X, and iy|x =1 cor-
responds to Y being independent from X); (ii) negative values cor-
respond to negative conditional entropy and imply a presence of
entanglement between partitions; (iii) for all pure entangled states
PaB = |¥)ag(¥| the both independence functions take minimal val-
ues (igp =iga = —1); (iv) in general, for mixed states relation
iA|B ;ﬁ iB\A holds.

Further, we can introduce the following formal definitions: in
bipartite state pap with S4 # Sp the party A is the “cause” and B
is the “effect” if ia;p > ip|a. Vice versa, one has B being the “cause”
and A being the “effect” if igj4 > ia3.

Finally, we need to introduce a measure of asymmetry based
on independence functions. In the current Letter it is convenient
to use difference

Sa—Ss

SiS5 dag € (—2,2). (2)
The zero value is obtained for symmetric or non-correlated states,
while the extreme values are obtained in cases when the entropy
of one subsystem tends to zero, while the entropy of another
does not, and mutual information takes the maximal possible value
which is doubled entropy of the first subsystem.

dap=1iaB —ipja = Iap

! The question about connection between asymmetry in bipartite states and real
causality is interesting, however, it is beyond the present work scope.

3. Quantum tomography

Quantum tomography suggests physical picture of quantum
mechanics as well as it has interesting mathematical structure.
Mathematical aspects of quantum tomography are well understood
in terms of group theory [26], C* algebra [27] and groupoids [28].

Following [26], we define quantum tomograms thought map-
ping of p € £2(#H) on a parametric set of probability distribution
functions

pe ) 28 (g, m), 3)

where m is a physical observable, G(g) is a transformation group
with parametrization by g, and parametric set 7{g,m} is called
quantum tomogram of the state p. From physical point of view,
every element of parametric set 7 {g, m} is a probability of obser-
vation value m after transformation G.

In case of continuous variables, i.e. when dimH = oo, group
Sp(2n, R) of phase space symplectic transformation plays role of
transformation group G(g). Mapping (3) at that rate reads

TQ, ) =(Q, u,nlpIQ, 1, 1), peRH),

where |Q, i, n) is an eigenvector of the Hermitian operator g +
np for the eigenvalue Q. One can see that 7(Q, u,n) is positive
and normalized on Q. This representation is directly related with
star-product quantization [8] and the Weyl-Heisenberg group [26].

The BDH setup reduces to mixing on beam splitter of measur-
able (weak) field and strong coherent field with changing phase 6.
In terms of (3) the observable is § =Gcos@ + psiné, where an-
gle 0 e R/27Z could be interpreted as rotation angle of the phase
space.

In case of system with discrete variables (dim?H < oo) map-
ping (3) transforms to the following relation

Tm(U) = mUpUTIm),  p e 2(H), (4)

where normalization and positivity follows directly from defini-
tion (4)

Y TmU)=1, Tn(U)=0.

In case U € SU(2) definition (4) reduces to general definition
for spin tomograms

U= (_"; f) e + 181> =1.

Here o, 8 € C are the Cayley-Klein parameters. In U € SU(2)
case the Euler angles [6] and quaternions 7] can be used for rep-
resentation of tomograms [29].

4. Tomographic approach to quantum causal analysis
Here we suggest to use an approach of quantum causal anal-
ysis to bipartite system asymmetry with respect to observable

outcomes described by quantum tomography. The bipartite state
tomogram reads

Tap(Ua®Up) = {ﬂBij(UA ®Up)},

and reduced tomograms have the form

Ta(Ua) = {Zm,,(uA ®u3)},
J

Te(Up) = {Zmﬁ(u,q@ug)}.
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