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Quantum multi-photon spin–boson model is considered. We solve an operator Riccati equation associated
with that model and present a candidate for a generalized parity operator allowing to transform spin–
boson Hamiltonian to a block-diagonal form what indicates an existence of the related symmetry of the
model.
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1. Introduction

Phenomenological modeling of interacting matter and (quan-
tized) light in physics has a long and interesting history [1]. It is
of quantum optical origin [2] but is present in wide range of other
branches of physics such as condensed matter [3–6] or involving
mechanical oscillators [7,8]. The Rabi model [9,10], describing a
qubit coupled to a single-mode electromagnetic field, is the one
which has attracted continuous attention for almost a century.
More [11–14] and less [15,16] recent studies on its integrability
have inspired increasingly growing research.

An existence of a symmetry of any quantum model is directly
related to a quality of our understanding of its properties [17].
A ‘sufficient’ (in certain sense) symmetry can result in an integra-
bility of the model [18]. That is why seeking for any underlying
symmetry of quantum models is always of great interest and often
of great importance. In this Letter we present our contribution to
this activity. We consider a family of generalized single-mode Rabi
models [19]:

H = ασx + ωa†a + σz
(

g∗ak + g
(
a†)k)

, (1)

where σz and σx are the Pauli matrices, α and ω correspond to
the energy gap of the spin and boson, respectively, whereas a and
a† are the annihilation and creation operators of quantized mode
of light satisfying canonical commutation relation, [a,a†] = I. It is
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assumed that the coupling between the qubit and the field, con-
trolled by the strength constant g , incorporates k > 0 photons.

In this Letter, by solving an operator Riccati equation associated
with Eq. (1), we construct an operator exhibiting significant sim-
ilarities to the parity operator acting on the bosonic space. This
operator, the generalized parity, can be used to simplify multi-
photon Rabi model (1) and transform it to a block-diagonal form.
Our work is a complementary expansion of certain results obtained
in Ref. [19] for k = 1 and k = 2 in the context of approximate
methods of solving the Rabi model.

The Letter is organized as follows: In Section 2 we present
operator Riccati equation associated with (1) serving as a main
tool applied in our studies. Next, in Section 3 the known results
concerning the k = 1, 2 cases are reviewed. Section 4 has been de-
voted to the construction of the generalized parity and contains
main results of our work. Finally, in Section 5, followed by conclu-
sions, we apply the general construction to a simple example.

2. A tool: Riccati equation

Multi-photon Rabi model considered here belongs to a general
class of qubit–environment composite systems described by Hamil-
tonian

HQE = HQ ⊗ IE + IQ ⊗ HE + Hint ∼
[

H+ V
V† H−

]
≡ HQE, (2)

where HQ (HE) is the Hamiltonian of the system (environment).
Hint is the interaction of the qubit with its surroundings. IQ and IE
are identities acting on corresponding Hilbert spaces C

2 and HE.
The total Hamiltonian HQE acts on C

2 ⊗ HE and the symbol ∼
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should be understand as ‘it corresponds to’ in the sense of block
operator matrix representation of operators. This correspondence
is established via the isomorphism C

2 ⊗ HE ∼ HE ⊕ HE. Finally,
the form of remaining operators H± and V depends upon how HQ,
HE and Hint are defined.

Any steps toward diagonalization of HQE is valuable as it can be
followed by variety of different approximation schemes [19]. There
is often an additional benefit emerging form such transformations
which can help to exhibit useful symmetry properties being often
obscured by an ‘improper choice’ of a basis. As it is pointed out
below it is also the case of the multi-photon Rabi model (1) dis-
cussed in this Letter.

Our idea originates from an observation that Hamiltonian HQE
can be converted to a block-diagonal form

S−1HQES =
[

H+ + VX 0
0 H− − (VX)†

]
,

with S =
[
IE −X†

X IE

]
, (3)

provided that X satisfies an operator Riccati equation

XVX + XH+ − H−X − V† = 0. (4)

For general considerations regarding an operator Riccati equation
we refer the reader to [20–22]. This equation provides valuable
tool allowing to study the exact diagonalization [23,24], station-
ary states [25] and in general, the dynamics [26] of two level
open quantum systems [27,28]. From the decomposition (3) it is
evident that the dynamics of a qubit–environment quantum sys-
tem is actually governed by the Riccati (4) and pair of uncoupled
Schrödinger equations.

For the k-photon Rabi model studied in our Letter

H± = ωa†a ± (
g∗ak + g

(
a†)k)

, V = αIHB (5)

and the corresponding Riccati equation reads as follows:

αX2 + XH+ − H−X − α = 0. (6)

Its mathematical properties has already been addressed in liter-
ature [29,30]. In Eq. (6), H± are operators acting on the bosonic
Fock space HB, α is a real constant, whereas X is a solution to be
found. If it does not lead to a confusion, we write α rather than
αIHB , with IHB being the identity on HB.

3. Known solutions: k = 1,2

For the sake of self-consistency, we begin with reviewing
known solutions and their properties for the two particular cases,
where k = 1,2. For the simplest possible case, k = 1 the solution of
the Riccati equation (6) was found in [24] to be the bosonic parity
operator

P =
∑
n∈N

eiπn|n〉〈n| =
∑
n∈N

(−1)n|n〉〈n|, (7)

which can also be written in a more compact form as P =
exp(iπa†a), where {|n〉}n∈N is the Fock basis, i.e., a†a|n〉 = n|n〉.
Such operator is both hermitian and unitary, hence it is an in-
volution (P2 = IHB ). Interestingly, it solves Eq. (6) for both α = 0
(dephasing [31,32]) and α 
= 0 (exchange energy between the sys-
tems is present) cases, although they reflect quite different physical
processes.

In the context of RWA-type approximation methods the two-
photon Rabi model was studied in details within [19]. The two-
photon parity operator

T := exp

[
i
π

2
a†a

(
a†a − 1

)]
, (8)

was introduced therein. It has not been stated explicitly in [19] but
the parity T is, as will be shown below, a solution of the Riccati
equation (6) for k = 2.

Note if a solution such that X2 = 1 exists, it allows for a
symmetry (constant of motion) to be easily found. Indeed, for
J = σx ⊗ X we have [H,X] = 0 as one can verify directly. Lets put
it differently: If a parity operator solves the Riccati equation (6)
then the Rabi model has a parity symmetry. Obviously this holds
for k = 1,2; in fact this is true for all k as we will shortly see.

Interestingly, two-photon Rabi model has also Z4 symmetry,
I2 ⊗ √

P. This additional constant of motion can be exploited to
get the exact solution of this model [33]. On the other hand, we
can write σx ⊗ k

√
P for two cases k = 1,2 simultaneously. This sug-

gest that if we set Jk = σx ⊗ k
√

P then perhaps [H, Jk] = 0 holds for
every k. Unfortunately, this is not true because of the relation

k
√

P†a
k
√

P = e−i π
k a†aaei π

k a†a

= a + 1

1! · π

k

[
a†a,a

] + 1

2! · π2

k2

[
a†a,

[
a†a,a

]] + · · ·
= ei π

k a (9)

which shows that after transformation a → cka we have c2
k = 1

only for k = 1,2. Note also that k
√

P is not a solution of (6) except
k = 1.

4. General case: k > 0

In what follows we show how to construct a solution of the
Riccati equation (6) with coefficients H± provided by (5) in the
general case k > 0. Before we start let us emphasize that the parity
operator P (T) introduced in the preceding section solves Eq. (6)
not only for k = 1 (k = 2) but also for all odd k = 2n + 1 (even, of
the form k = 4n + 2) cases. This has already been noticed in [19].
Here we will not only fill the remaining gap k = 4n + 4 but also
present unified approach allowing to obtain a linear solution for
arbitrary k. As a first step toward constructing this solution, we
define a family of orthogonal projectors

Pl :=
∞∑

n=0

|n, l〉〈n, l|, with |n, l〉 := |kn + l − 1〉, (10)

for n ∈ N and 1 � l � k. The states |n, l〉 satisfy the following or-
thogonality condition:

〈i,n| j,m〉 = δkn+i−1,km+ j−1 = δi jδnm, (11)

where δxy is the Kronecker delta. The first equality in Eq. (11)
comes from the orthogonality of the Fock basis. The second one
can be justified as follows.

When i = j both sides of (11) reduce to δnm since δkn+i−1,km+i−1
= δnm . If i 
= j (say i > j) the right hand side is zero. The left hand
side also vanishes, as one gets either m = n or m 
= n in this case.
Indeed, if m = n then, to get nonzero left hand side, one would ex-
pect i − j = 0 what is impossible. Finally, for m 
= n (m > n, say)
one would expect that k(m − n) = j − i (in order to keep the left
side nonzero) what also does not occur as k > i − j and it cannot
divide i − j.

For a given family of orthogonal projectors one can split the
space HB into k subspaces so that

HB = H1 ⊕H2 ⊕ · · · ⊕Hk−1 ⊕Hk =
k⊕

l=1

Hl, (12)

where Hl := Pl(HB). The symbol ⊕ indicates the (orthogonal) di-
rect sum of Hilbert spaces. Hereafter, we use it interchangeably
with + when it refers to the sum of operators.
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