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In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate
a family of local fractional differential operators on Cantor sets. Some testing examples are given to
illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the
damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations
on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.
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1. Introduction

Everything in the Cartesian-coordinate system is used to be
measured with respect to the coordinate axes. However, the Carte-
sian coordinates are not best suited for every shape. Certain
shapes, like circular or spherical ones, cannot even be demon-
strated through a function in Cartesian-coordinate system. These
shapes are more easily determined in cylindrical or spherical
coordinates [1]. They are the equivalent of the origin in the
Cartesian-coordinate system. Both classical and fractional differ-
ential equations in the coordinate system are switched between
Cartesian, cylindrical and spherical coordinates [2,3].

Recently, the Cantorian-coordinate system, which was first con-
strued in [4–6], was set up on fractals. Based on it, the heat-
conduction equation on Cantor sets without heat generation in
fractal media was presented in [4] as follows:
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K 2α∇2αT − ραcα
∂αT

∂tα
= 0 (1)

or

K 2α

(
∂2αT

∂x2α
+ ∂2αT

∂ y2α
+ ∂2αT

∂z2α

)
− ραcα

∂αT

∂tα
= 0, (2)

where

∇2α = ∂2α

∂x2α
+ ∂2α

∂ y2α
+ ∂2α

∂z2α

is the local fractional Laplace operator [4–6], whose local fractional
differential operator is denoted as follows [4–11] (for other defini-
tions, see also [12–25]):

f (α)(x0) = dα f (x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

�α( f (x) − f (x0))

(x − x0)α
, (3)

where �α( f (x) − f (x0)) ∼= Γ (1 + α)�( f (x) − f (x0)) and f (x) is
satisfied with the following condition [4,15]:∣∣ f (x) − f (x0)

∣∣ � τα |x − x0|α,

so that (see [4–18])

0375-9601/$ – see front matter © 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physleta.2013.04.012

http://dx.doi.org/10.1016/j.physleta.2013.04.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:dyangxiaojun@hotmail.com
mailto:dyangxiaojun@163.com
mailto:harimsri@math.uvic.ca
mailto:hejihuan@suda.edu.cn
mailto:dumitru@cankaya.edu.tr
http://dx.doi.org/10.1016/j.physleta.2013.04.012
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physleta.2013.04.012&domain=pdf


X.-J. Yang et al. / Physics Letters A 377 (2013) 1696–1700 1697

∣∣ f (x) − f (x0)
∣∣ < εα (4)

with |x − x0| < δ, for ε, δ > 0 and ε, δ ∈ R.
In a similar manner, for a given vector function F(t) = F1(t)eα

1 +
F2(t)eα

2 + F3(t)eα
3 , the local fractional vector derivative is defined

by (see [4])

F(α)(t0) = dαF(t)

dtα

∣∣∣∣
t=t0

= lim
t→t0

�α(F(t) − F(t0))

(t − t0)α
(5)

where eα
1 , eα

2 and eα
2 are the directions of the local fractional vec-

tor function.
The aim of this Letter is to investigate the Cantor-type cylindri-

cal-coordinate method within the local fractional vector operator.
The layout of the Letter is as follows. In Section 2, we propose and
describe the Cantor-type cylindrical-coordinate method. In Sec-
tion 3, we consider the testing examples. Finally, in Section 4, we
present our concluding remarks and observations.

2. Cantor-type cylindrical-coordinate method

For the following Cantor-type cylindrical coordinates [4]:⎧⎨
⎩

xα = Rα cosα θα,

yα = Rα sinα θα,

zα = zα,

(6)

with R > 0, z ∈ (−∞,+∞), 0 < θ < 2π and x2α + y2α = R2α , we
have the local fractional vector given by

r = Rα cosα θαeα
1 + Rα sinα θαeα

2 + zαeα
3 , (7)

so that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cα
R = 1

Γ (1 + α)

∂αr

∂ Rα
= cosα θαeα

1 + sinα θαeα
2 ,

Cα
θ = 1

Γ (1 + α)

∂αr

∂θα

= − Rα

Γ (1 + α)
sinα θαeα

1 + Rα

Γ (1 + α)
cosα θαeα

2 ,

Cα
3 = 1

Γ (1 + α)

∂αr

∂zα
= eα

3 .

(8)

Therefore, we obtain⎧⎨
⎩

eα
R = cosα θαeα

1 + sinα θαeα
2 ,

eα
θ = − sinα θαeα

1 + cosα θαeα
2 ,

eα
z = eα

3 ,

(9)

where Cα
R = eα

R , Cα
θ = Rα

Γ (1+α)
eα
θ , Cα

3 = eα
z .

Now, by making use of Eq. (9), we can write this last result in
matrix form as follows:⎛
⎝eα

R
eα
θ

eα
z

⎞
⎠ =

( cosα θα sinα θα 0
− sinα θα cosα θα 0

0 0 1

)⎛
⎝ eα

1
eα

2
eα

3

⎞
⎠ , (10)

which leads to

Eα
i = Tα

i jE
α
j , (11)

where

Eα
i =

⎛
⎝eα

R
eα
θ

eα
z

⎞
⎠ , Tα

i j =
( cosα θα sinα θα 0

− sinα θα cosα θα 0
0 0 1

)
,

Eα
j =

⎛
⎝eα

1
eα

2
eα

3

⎞
⎠ . (12)

Here Tα
i j is fractal matrix, which is defined on the generalized Ba-

nach space [5,6]. The general basis vectors of two fractal spaces are
defined, respectively, from the fractal tangent vectors [4], namely,

Eα
i =

⎛
⎝eα

R
eα
θ

eα
z

⎞
⎠ , Eα

j =
⎛
⎝eα

1
eα

2
eα

3

⎞
⎠ . (13)

In view of Eqs. (8) and (9), upon differentiating the Cantorian posi-
tion with respect to the Cantor-type cylindrical coordinates implies
that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eα
R = 1

Γ (1 + α)

∂αr

∂ Rα
= cosα θαeα

1 + sinα θαeα
2 ,

eα
θ = 1

Rα

∂αr

∂θα
= − sinα θαeα

1 + cosα θαeα
2 ,

eα
z = 1

Γ (1 + α)

∂αr

∂zα
= eα

3 .

(14)

Eq. (14) is orthogonal and normalized everywhere (see [5,6]).
Hence, we can define a local fractal basis with an orientation,
which is derived from one fractal space to another fractal space.
Based on this, a local fractional vector field can be defined as fol-
lows:

r(R, θ, z) = r · (eα
R + eα

θ + eα
z

)
(15)

where the fractal vector coordinates given by

rR = r(R, θ, z) · eα
R , rθ = r(R, θ, z) · eα

θ ,

rz = r(R, θ, z) · eα
z (16)

are the projections of r on the local fractal basis vectors.
The local fractional derivatives with respect to the Cantor-type

cylindrical coordinates are given by the local fractional differentia-
tion through the Cantorian coordinates as follows:

∂α

∂ Rα
=

(
∂x

∂ R

)α
∂α

∂xα
+

(
∂ y

∂ R

)α
∂α

∂ yα
+

(
∂z

∂ R

)α
∂α

∂zα

= Γ (1 + α)

(
cosα θα ∂α

∂xα
+ sinα θα ∂α

∂ yα

)
= eα

R · ∇α = ∇α
R , (17)

∂α

∂θα
=

(
∂x

∂θ

)α
∂α

∂xα
+

(
∂ y

∂θ

)α
∂α

∂ yα
+

(
∂z

∂θ

)α
∂α

∂zα

= Rα

(
− sinα θα ∂α

∂xα
+ cosα θα ∂α

∂ yα

)
= Rαeα

θ · ∇α = Rα∇α
θ (18)

and

∂α

∂zα
=

(
∂x

∂z

)α
∂α

∂xα
+

(
∂ y

∂z

)α
∂α

∂ yα
+

(
∂z

∂z

)α
∂α

∂zα

= Γ (1 + α)
∂α

∂zα
= eα

z · ∇α = ∇α
z , (19)

where

∇α
R = eα

R · ∇α = ∂α

∂ Rα
, ∇α

θ = Rαeα
θ · ∇α = 1

Rα

∂α

∂θα
,

∂α

∂zα
= eα

z · ∇α = ∇α
z . (20)

In light of Eq. (20), the local fractional gradient operator is de-
scribed as follows:

∇α = eα
R∇α

R + eα
θ ∇α

θ + eα
z ∇α

z

= eα
R

∂α

∂ Rα
+ eα

θ

1

Rα

∂α

∂θα
+ eα

z
∂α

∂zα
. (21)
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