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In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate
a family of local fractional differential operators on Cantor sets. Some testing examples are given to
illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the
damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations
on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.
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1. Introduction

Everything in the Cartesian-coordinate system is used to be
measured with respect to the coordinate axes. However, the Carte-
sian coordinates are not best suited for every shape. Certain
shapes, like circular or spherical ones, cannot even be demon-
strated through a function in Cartesian-coordinate system. These
shapes are more easily determined in cylindrical or spherical
coordinates [1]. They are the equivalent of the origin in the
Cartesian-coordinate system. Both classical and fractional differ-
ential equations in the coordinate system are switched between
Cartesian, cylindrical and spherical coordinates [2,3].

Recently, the Cantorian-coordinate system, which was first con-
strued in [4-6], was set up on fractals. Based on it, the heat-
conduction equation on Cantor sets without heat generation in
fractal media was presented in [4] as follows:
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is the local fractional Laplace operator [4-6], whose local fractional
differential operator is denoted as follows [4-11] (for other defini-
tions, see also [12-25]):

d” f(x)
dX(X X=X

where A*(f(x) — f(x0)) = I'(1 + )A(f () — f(x0)) and f(x) is
satisfied with the following condition [4,15]:

— lim A% (f(x) = f(x0))
X=X (x — x0)*

f@(x0) = 3)

|fx) = f(x0)| < T%Ix—x0|*,

so that (see [4-18])
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|f(x) — fxo)| < &” (4)

with |x —xg| <8, for ,§ >0 and ¢,8 €R.

In a similar manner, for a given vector function F(t) = Fq(t)ef +
Fa(t)e§ + F3(t)e§, the local fractional vector derivative is defined
by (see [4])

dF(t)

dte t=t, Lo

A% (F(t) — F(to))
(t —to)*

where e{, eJ and ef are the directions of the local fractional vec-
tor function.

The aim of this Letter is to investigate the Cantor-type cylindri-
cal-coordinate method within the local fractional vector operator.
The layout of the Letter is as follows. In Section 2, we propose and
describe the Cantor-type cylindrical-coordinate method. In Sec-
tion 3, we consider the testing examples. Finally, in Section 4, we
present our concluding remarks and observations.

F9(to) = (5)

2. Cantor-type cylindrical-coordinate method

For the following Cantor-type cylindrical coordinates [4]:
X% = R% cosy 0%,
y% = R%sing 6%, (6)
%=z

with R > 0, z € (=00, +00), 0 < 6 < 27 and x> + y2* = R2* we
have the local fractional vector given by

r=R% cos, 6%e{ + R% sing 6%e5 + z%¢f, (7)
so that
1 a%r
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R= T +a) ok o 07 €7 + 5Ny 07 €
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Therefore, we obtain
e} = cosy 0“e$ + sing 0% e,
ej = —sing 6%ef + cosy 6%e7, (9)
el =ef,
where C} = e%, Cf = &€, ¢ =e?.

Now, by making use of Eq. (9), we can write this last result in
matrix form as follows:

e} cosy 0%  sing 6% 0\ [ef
el | = (— sing 0% oSy 0% 0) e . (10)
e 0 0o 1/ \e
which leads to
Ef = TjES. ()
where
e} cosq 0%  sing 6% 0
E'=|¢e} |, '[‘,)J‘ = (—sina 0% cosy 0% O),
e 0 0o 1
ef
E‘}‘ =| e (12)

Here T% is fractal matrix, which is defined on the generalized Ba-
nach space [5,6]. The general basis vectors of two fractal spaces are
defined, respectively, from the fractal tangent vectors [4], namely,
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In view of Egs. (8) and (9), upon differentiating the Cantorian posi-
tion with respect to the Cantor-type cylindrical coordinates implies
that
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Eq. (14) is orthogonal and normalized everywhere (see [5,6]).
Hence, we can define a local fractal basis with an orientation,
which is derived from one fractal space to another fractal space.
Based on this, a local fractional vector field can be defined as fol-
lows:

r(R,0,2)=r- (e} +ej +e2) (15)

where the fractal vector coordinates given by

R =T1(R,0,2) -ef,
r;=r(R,0,2)- € (16)

ro=r(R,0,2) -ef,

are the projections of r on the local fractal basis vectors.

The local fractional derivatives with respect to the Cantor-type
cylindrical coordinates are given by the local fractional differentia-
tion through the Cantorian coordinates as follows:
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In light of Eq. (20), the local fractional gradient operator is de-
scribed as follows:

V¥ =ef VR +efVy + el VY
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=ef—+ef—— +e¥—. 21
Roga T € Ragga T8 5 (21)



Download English Version:

https://daneshyari.com/en/article/1859256

Download Persian Version:

https://daneshyari.com/article/1859256

Daneshyari.com


https://daneshyari.com/en/article/1859256
https://daneshyari.com/article/1859256
https://daneshyari.com/

