
Physics Letters A 376 (2012) 2292–2297

Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors
games

Luo-Luo Jiang a,b,∗, Wen-Xu Wang c,d, Ying-Cheng Lai c,e, Xuan Ni c

a College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
b College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
d Department of Physics, Beijing Normal University, Beijing 100875, China
e Department of Physics, Arizona State University, Tempe, AZ 85287, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2012
Received in revised form 17 May 2012
Accepted 30 May 2012
Available online 4 June 2012
Communicated by C.R. Doering

Keywords:
Spiral
Antispiral
Rock–paper–scissors game
Nonlinear system

We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors
games with mobile individuals. We discover a set of seed distributions of species, which is able to
produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based
on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on
partial differential equations associated with specific initial conditions. The spatial entropy of patterns
is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility,
the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the
waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals
and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and
multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers
of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In
addition, comparing to large amount of previous work, we employ the no flux boundary conditions which
enables quantitative studies of pattern formation and stability in the system of stochastic interactions in
the absence of excitable media.

© 2012 Elsevier B.V. All rights reserved.

Formation of self-organized pattern is a fundamental aspect of
physical and biological systems out of equilibrium. Spiral waves are
quite common in a variety of excitable systems and population dy-
namics, such as Belousov–Zhabotinsky reaction [1,2], the cardiac
tissue [3], inset population dynamics [4] and cyclically competing
populations with mobility [5]. Spiral waves play significant roles
in the dynamics of excitable systems, e.g., in heart disease, such
as arrhythmia and fibrillation, which lead to death [3,6,7]. Spiral
waves are important in population dynamics as well. In particu-
lar, biodiversity in cyclically competing populations with stochastic
interactions can be maintained and stabilized by entangled mov-
ing spiral waves [5,8]. The coexistence of two or more spirals may
form multi-armed spiral and antispiral waves. These interesting
joint spirals have been extensively studied in excitable systems
theoretically and experimentally [9–14]. However, in the popula-
tion dynamics in the presence of stochastic processes, multi-armed
spirals and multi-pairs antispirals among entangled spirals is rarely
studied and far from being well understood. There are two impor-
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tant open questions associated with these waves: Are they able to
be generated through stochastic interactions and how is their sta-
bility? The purpose of this Letter is to address these questions in
the framework of cyclic competing games with mobile individuals.

Non-hierarchical cyclic competitions have been observed in a
number of real ecosystems, ranging from colicinogenic microbes
competition to mating strategies of side-blotched lizards in Cali-
fornia [15–19], as well as human sociality in terms of public goods
games [20–22]. The essential features of such competition can
be captured by the childhood game “rock–paper–scissors” (RPS).
In the game, species coexistence, as the key factor for maintain-
ing biodiversity, has been given much attention, especially for the
conditions that ensure species coexistence [23–31]. Both labora-
tory experiment and theoretical model have revealed that spatial
structure by confining local interaction is necessary for stabilizing
species coexistence [19]. Otherwise, stochastic effect and external
perturbation can easily ruin biodiversity. Quite recently, individual
mobility has been incorporated in the spatial RPS game [5,8,32,33].
It has been found that individual mobility induces entangled mov-
ing spiral waves which preclude species from extinction [5]. The
stochastic game has been casted into a set of partial differential
equations by a continuous approximation [8]. In this Letter, we in-
vestigate the origin of multi-armed spiral waves and multi-pairs
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antispiral waves on the basis of the spatial RPS game with mo-
bile individuals, which is unaddressed prior to our work. We find
that the joint spiral waves can spontaneously arise due to the in-
teraction of neighboring spirals and the type of the joint spirals
is determined by the position and rotational directions of neigh-
boring spirals. In particular, we discover a general set of seeds of
species distribution, which is capable of producing multi-armed
spirals with a finite number of arms and antispirals with finite
number of pairs. The diverse patterns generated from stochastic
simulations are reproduced by solving a set of partial differential
equations from specific initial conditions. We have also discussed
the stability of the joint spiral waves with respect to individual
mobility.

We consider the spatial RPS game proposed in Ref. [5]. Nodes of
a L × L square lattice with no flux boundary conditions sustain mo-
bile individuals belonging to one of the three species, A, B and C .
Each node can either host one individual of a given species or it
can be vacant. Vacant sites, denoted by ⊗, are also the so-called
resource sites where individuals of species reproduce offspring. The
dynamical process can be described as following:

AB
1−→ A⊗, BC

1−→ B⊗, C A
1−→ C⊗, (1)

A⊗ 1−→ A A, B⊗ 1−→ B B, C⊗ 1−→ CC, (2)

A� γ−→ �A, B� γ−→ �B, C� γ−→ �C (3)

where � denotes any species or vacant sites. These reactions de-
scribe three processes, i.e. competition, reproduction and exchange,
occurring only between neighboring nodes. In reaction (1), species
A eliminates species B at a rate 1, whereby the node previously
hosting species B becomes vacant. In the same manner species B
can kill species C , and species C can kill species A, thus forming
a closed loop. In reaction (2), individuals place an offspring to a
neighboring vacant node ⊗ at a rate 1. Reaction (3) defines ex-
change process where an individual exchanges its position with an
individual belonging any species or an empty site at a rate γ . Ac-
cording to the theory of random walks [34], mobility of individuals
M is defined as: M = γ /2N , where N = L × L and M represents the
typical area explored by one mobile individual per unit time.

We apply stochastic algorithm developed by Gillespie to simu-
late the system’s evolution [35], where the occurring probabilities
of reactions are determined by their rates. In our model, compe-
tition and reproduction occur with probability 1/(γ + 2), whereas
exchange (moving) occurs with probability γ /(γ +2). At each step,
an individual is randomly selected to interact with one randomly
selected neighboring site. In one time step, all individuals are se-
lected once on average.

A critical value Mc = (4.5 ± 0.5) × 10−4 of mobility has been
identified in Ref. [5]. Below Mc , three subpopulations can stably
coexist in the form of moving spiral waves; while above Mc , the
wave length of spirals exceeds the size of underlying lattice and
biodiversity is lost. Here, we focus on the biodiversity region for
M < Mc . In this region, by carrying out sufficient stochastic sim-
ulations from random initial distributions of species, we found
there is chance to observe both multi-armed spirals and multi-
pairs antispirals, as shown in Fig. 1(b) and (e). For different specific
initial conditions (see Fig. 2(b) and (c) for details), a two-armed
spiral and an one-pair antispiral can be reproduced, as shown in
Fig. 1(a) and (c) respectively, which are qualitatively the same as
the marked patterns in Fig. 1(b). In addition, as shown in Fig. 1(a)
and (c) respectively, a one-armed spiral and a two-pairs antispi-
ral emerge from special initial conditions (see Fig. 2(d) and (e)
for details), which are observed in Fig. 1(e). We also found that
these patterns can last for relative long time and then they may
disappear or transform to single armed spirals with the initial
conditions of species randomly distributing on the lattice. In the

Fig. 1. (Color online.) Spatial patterns in RPS game for M = 5.0 × 10−5. Panels (b)
and (e) are obtained from random distribution of three species initially. In pan-
els (a), (c), (d), and (f), the system starts from specific seed distributions of three
species. The marked local patterns in (b) can be reproduced from specific initial
conditions, as shown in (a) and (c). The marked local patterns in (e) can be gener-
ated as well, as shown in (d) and (f). L = 512 for all panels.

multi-armed spirals, the arms rotate in the same direction with
the same speed, resulting exclusively from stochastic interactions
among neighboring individuals. In the antispirals, the two spirals
of a pair rotate with the same speed but in reverse directions. The
identical rotational speed of sub-spirals in the waves ensures their
stable existence. It is noteworthy mentioning that the patterns in
Fig. 1 are obtained from no flux boundary conditions, and we also
examine the phase transition of system from biodiversity to uni-
formity with no flux boundary conditions. As shown in Fig. 2(a),
a critical mobility Mc emerges at 4.5 × 10−4, which is the same as
the result of periodic boundary conditions in Ref. [5].

It is interesting to find that the multi-armed spirals and multi-
pairs antispirals can arise from some specific distribution of three
subpopulations. As shown in Figs. 2(b) and 2(c), square, triangle
and circle symbols stand for a small amount of three subpop-
ulations which are placed on a lattice with no flux boundary
condition. Other sites of the lattice are left empty. In the early
stage, each pile of individuals expand due to reproduction. After
the boundaries of different species encounter, populations begin
to rotate because of the cyclic competition. Finally, after the sys-
tems reaching a non-equilibrium steady state, a two-armed spiral
and a one-pair antispirals emerge. Let’s see Fig. 2(b), the six pile of
species placed around a circle are in the order A, B , C , A, B , and C .
The six piles can be separated into two groups, each of which con-
tains three species. During the evolution, each group form an arm.
Due to the spatial symmetry of the two group, the wave length, ro-
tation speeds and directions of the two arms are the same, giving
rise to a steady two-armed spiral (Fig. 1(a)). In contrast, to gen-
erate antispirals, we need to place a finite number of species at
the center of a circle and the other two species around the circle
(Fig. 2(c)), leading to a steady one-pair antispiral (Fig. 1(c)).

By extending the simple configuration in Fig. 2(b) and (c), we
discover a general route to generate multi-armed spirals with a fi-
nite number of arms and antispirals with a finite number of pairs.
To articulate the method, we should define the basic cell in the
initial distribution of species. As shown in Fig. 2(d), the cell of
multi-armed spirals is composed of three species in the order A, B
and C . The cell of antispiral contains two species except the cen-
tral species. The central species can be a finite number, but once
the central species is fixed, the cell is fixed as well. For the multi-
armed spirals, the number of arms is determined by the number
of cells. In general, one arm can be formed by one cell, so that by
adjusting the number of cells, one can obtain multi-armed spirals



Download	English	Version:

https://daneshyari.com/en/article/1859349

Download	Persian	Version:

https://daneshyari.com/article/1859349

Daneshyari.com

https://daneshyari.com/en/article/1859349
https://daneshyari.com/article/1859349
https://daneshyari.com/

