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A novel atom configuration is proposed for a giant Kerr nonlinearity in zero linear and nonlinear
probe absorption. It is shown that without coherent control field and just by quantum interference of
spontaneous emission, a giant Kerr nonlinearity can be obtained.
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1. Introduction

The interference of spontaneous emission channels refers to
spontaneously generated coherence (SGC). Spontaneous emissions
from a single excited state to two lower closely spaced levels V-
type [1] or from two closely spaced upper levels to a common
atomic ground state V-type [2] can interfere. In a cascade three-
level system, SGC can also be created in a nearly spaced atomic
levels case [3,4]. The existence of such coherence relies on the two
atomic dipole matrix elements be non-orthogonal when the atom
is placed in a free space. Some efforts have been made experi-
mentally in the past two decades to generate SGC [5]. The first
experimental investigation of spontaneous emission interference
by using the sodium molecule carried out by Xia et al. [5]. It is be-
lieved that this type of coherence can alter some optical properties
of atomic media. Although it is difficult to realize SGC experimen-
tally in atomic systems, there are several proposals to investigate
this effect. The effect of SGC on lasing without population inver-
sion (LWI) [6], electromagnetically induced transparency (EIT) [7],
optical bistability (OB) and optical multistability (OM) [8], and pop-
ulation inversion [9] have been extensively studied in a three-level
or multilevel systems. Recently, it is shown that EIT has opened
up a completely new route to achieving large optical nonlinearity
[10,11]. EIT is also the mechanism underlying the recent experi-
ments in ultra-slow group velocity of a probe pulse and therefore
greatly increases the effective interaction time of the pulse with
the medium [12]. These features enable one to use an EIT medium
to achieve nonlinear optical processes at very low light intensities
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[13]. Moreover, EIT can significantly enhance the nonlinear inter-
action strength in multilevel atomic systems.

Recent studies have shown that Kerr nonlinearity can be used
for quantum nondemolition measurements [14], quantum bit re-
generation [15], quantum state teleportation [16], and the genera-
tion of the optical solitons [17]. Thus, it is suitable to have large
third-order nonlinear susceptibilities under condition of slow light
level and high sensitivities. This requires that the linear suscepti-
bilities should be as small as possible for all pump and signal fields
in order to minimize absorption loss. Note that Kerr nonlinearity
corresponds to the refraction part of the third-order susceptibility
in an optical medium. The large nonlinear susceptibility with small
absorption causes the nonlinear optics to be studied at low light
levels [13,18,19]. Since the ideal EIT regime dose not interact with
the probe light, it cannot produce any nonlinear effects. However,
it is shown that a large Kerr nonlinearity with vanishing absorption
can be occurred in general three-level systems with spontaneously
generated coherence (SGC) [20]. The effect of SGC on Kerr non-
linearity in a four-level atomic system has also been proposed
[21]. The four-level EIT media are the convenience optical media to
enhance the Kerr nonlinearity. Schmidt et al. [22] proposed a four-
level N-type system to enhance the third order susceptibilities and,
at the same time, completely suppressing the linear susceptibili-
ties. Nakajima [23] found that the autoionizing off-resonance could
lead to enhanced third-order susceptibilities. In another proposal,
Niu et al. [24] predicted that in a four-level double-dark resonance
system, the interacting double-dark resonance can effectively be
enhanced the Kerr nonlinearity. The experimental observation of
a large Kerr nonlinearity at low light intensities in four-level ru-
bidium atoms has also been reported [25]. To the best of our
knowledge, the giant Kerr nonlinearity in the absence of coherent
control field is not reported for any atomic media.
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Fig. 1. Schematic diagram of proposed four-level atomic system is shown. In
87Rb-D1 line (nuclear spin I = 3/2) cold atoms, states |1〉 and |4〉 correspond to
|5S1/2, F = 1, M F = ±1〉, states |2〉 and |3〉 correspond to |5P1/2, F = 1, M F = 0〉
and |5P1/2, F = 2, M F = 0〉, respectively.

In this Letter, we consider a double V-type of a four-level atom
interacting by a weak probe field in the absence of coherent con-
trol field. The effects of SGC on linear and nonlinear susceptibility
are investigated. It is shown that the SGC can dramatically reduce
linear absorption and at the same time enhance the Kerr nonlin-
earity.

2. Model and equations

Consider a four-level atomic medium interacting by a probe
laser field as depicted in Fig. 1. A probe laser field couple ground
level |1〉 to upper levels |2〉 and |3〉. The spontaneous decay rates
from levels |3〉 and |2〉 to level |1〉 denotes by γ4 and γ3, respec-
tively. Also the spontaneous emission from levels |3〉 and |2〉 to
level |4〉 are denotes by γ1 and γ2. The other decay rates are ig-
nored. There are two major dynamical processes occurring in the
system: (i) interaction with the reservoir governing the decay pro-
cesses from levels |3〉 and |2〉 to the levels |1〉 and |4〉, (ii) inter-
action with the weak probe field. The processes are described by
two interaction Hamiltonian terms H1 and H2 respectively. Thus
including to the free energy term, the total Hamiltonian can be
written as [26]

H = H0 + H1 + H2, (1)

with

H0 = h̄ω1|1〉〈1| + h̄ω2|2〉〈2| + h̄ω3|3〉〈3| + h̄ω4|4〉〈4|, (2a)

H1 = −h̄
(
Ωp1e−iνpt |2〉〈1| + Ωp2e−iνpt |3〉〈1|) + h.c., (2b)

H2 = −
∑

g(1)

k e−i(νk−ω43)t |4〉〈3|bk + g(2)

k e−i(νk−ω42)t |4〉〈2|bk

+ g(3)

k e−i(νk−ω21)t |2〉〈1|bk

+ g(4)

k e−i(νk−ω31)t |3〉〈1|bk + h.c. (2c)

where h̄ωi gives the energy of state |i〉 (i = 1,2,3,4). Here, Ωp1
and Ωp2 are the Rabi-frequency of the weak probe field, corre-
sponding to the transitions |3〉 → |1〉 and |2〉 → |1〉. bk(b′

k) is the
annihilation (creation) operator for the kth vacuum mode with
frequency νk; k here represents both the momentum and polariza-
tion of the vacuum mode. The density matrix equations of motion
in the rotating wave approximation and in rotating frame can be
written as

∂ρ31

∂t
= −

(
1

2
(γ4 + γ1) + iδ

)
ρ31 − iΩp1(ρ33 − ρ11)

− iΩp2ρ32 − 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )ρ21, (3a)

∂ρ21

∂t
= −

(
1

2
(γ3 + γ2) + i(δ − ω23)

)
ρ21 − iΩp1ρ23

+ iΩp2(ρ11 − ρ22) − 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )ρ31, (3b)

∂ρ41

∂t
= −

(
1

2
(γ1 + γ2) + iδ

)
ρ41 − iΩp1ρ43 + iΩp2ρ42, (3c)

∂ρ42

∂t
= −

[
1

2
(γ3 + γ2) − iΔ2

]
ρ42 + iΩ2(ρ22 − ρ44)

− iΩp2ρ41 − 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )ρ43, (3d)

∂ρ43

∂t
= −

[
1

2
(γ4 + γ1)

]
ρ43 − iΩp1ρ41

− 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )ρ42, (3e)

∂ρ44

∂t
= +γ1ρ33 + γ2ρ22 + 1

2
β
√

γ1γ2(ρ23 + ρ32), (3f)

∂ρ32

∂t
= −

[
1

2
(γ3 + γ4 + γ1 + γ2) + iω23

]
ρ32 + iΩp1ρ12

− iΩp2ρ31 − 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )(ρ33 + ρ22), (3g)

∂ρ33

∂t
= iΩp1(ρ13 − ρ31) − (γ4 + γ1)ρ33

− 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )(ρ23 + ρ32), (3h)

∂ρ22

∂t
= iΩp2(ρ12 − ρ21) − (γ3 + γ2)ρ22

− 1

2
(P

√
γ3γ4 + β

√
γ1γ2 )(ρ23 + ρ32), (3i)

∂ρ11

∂t
= iΩp2(ρ12 − ρ21) + iΩp1(ρ13 − ρ31)

+ (γ3 + γ4)ρ11 + 1

2
P
√

γ3γ4(ρ23 + ρ32). (3j)

Here, detuning parameters are defined as δ = Δ + ω32
2 , where

parameter Δ = νp − ω21+ω31
2 measures the common detuning of

probe field from the middle of doublet states. In addition, we as-
sume that the dipole matrix elements for both transitions |1〉 →
|2〉 and |1〉 → |3〉 are both equal, i.e. | �℘12| = | �℘13| = ℘ . Thus, the
Rabi-frequency of probe field is defined as Ωp1 = Ωp2 = Ωp = εp℘

2h̄ .

The parameter P (= �℘13. �℘12
|℘13||℘12| ) and β (= �℘34. �℘24

|℘34||℘24| ) denote the align-
ment of the matrix elements of four dipole moments. If the dipole
moments of the two transitions are parallel or antiparallel, we
have P (β) = ±1, while for the orthogonal case we have P (β) = 0.
As pointed out above, the term P

√
γ3γ4 and β

√
γ1γ2 represent

the effect of quantum interference between spontaneous emission
pathways from |3〉 to |1〉 (|4〉) and from |2〉 to |1〉 (|4〉).

As is known, the response of the atomic medium to the weak
probe field is governed by its polarization P = ε0(E pχ + E∗

pχ
∗)/2

with χ being the susceptibility of the atomic medium. By perform-
ing a quantum average of the dipole moments over an ensemble
of N atoms, it is found that P = N(℘13ρ31 + ℘31ρ13 + ℘12ρ21 +
℘21ρ12). In order to derive the linear and nonlinear susceptibility
it is needed to obtain the steady state solution of density ma-
trix equations. The density matrix elements can be expanded as
ρi j = ρ

(0)
i j + ρ

(1)
i j + ρ

(2)
i j + · · · . The zeroth order solution of ρ11

will be identical, i.e., ρ
(0)
11 = 1, and other elements are set to be

zero. The first and third order susceptibilities χ(1) and χ(3) of the
medium can be determined by coherence terms ρ

(1)
31 and ρ

(1)
21 in

Eq. (5a) and ρ
(3)
31 , ρ

(3)
21 in Eq. (5b), respectively. For the analytical

solution we set γ1 = γ2 = γ3 = γ4 = γ . The matrix elements ρ21
and ρ31 up to third order is obtained:
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