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In this Letter, the fractional variational iteration method using He’s polynomials is implemented to
construct compacton solutions and solitary pattern solutions of nonlinear time-fractional dispersive KdV-
type equations involving Jumarie’s modified Riemann-Liouville derivative. The method yields solutions in
the forms of convergent series with easily calculable terms. The obtained results show that the considered
method is quite effective, promising and convenient for solving fractional nonlinear dispersive equations.

It is found that the time-fractional parameter significantly changes the soliton amplitude of the solitary
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1. Introduction

Recently, various nonlinear dispersive KdV-type equations have
arisen in a large range of physical phenomena. They can be used
to study shallow-water waves [1], optical solitons in the two-
cycle regime [2], density waves in traffic flow of two kinds of
vehicles [3], short waves in nonlinear dispersive models [4], sur-
face acoustic soliton in a system supporting Love waves [5] and
so on. Due to the importance of the KdV-type equations, com-
pactons, solitons and periodic solutions of these equations in-
cluding K(m,n) equations, K(m, p, 1) equations, coupled Hirota-
Satsuma KdV equations and variable-coefficient mKdV equation,
have been extensively investigated by many researchers [6-14].

Most recently, fractional differential equations (FDEs) have
gained much attention due to the exact description of nonlinear
phenomena in fluid flow, biology, physics, engineering and other
areas of science. That is because of the fact that, the next state of
a real physical phenomenon might depend on not only its current
state but also upon its historical states(non-local property), which
can be successfully modeled by using the theory of derivatives and
integrals of fractional order. A natural question is that: How can
we get the exact solutions of FDEs? The aim of the present Letter
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is to construct exact solutions of three time-fractional nonlinear
dispersive KdV-type equations given in the following models:

e A variant of the time-fractional KdV equation:

D?u - a(uz)x + [u(u)x"]x + [U(U)x]xx =0,
O<a<l. (1)

e The time-fractional K (2,4, —2) equation:

D¢u +a(u2)x+b[u4(u’2)xx])(:0, O<a<1. (2)

e The time-fractional K (3, 3, 1) equation:
Dfu+ (1), — (1) g + ooy =0, O < < 1. 3)

Here a,b are real constants, [u(u)xx]x and [u(u)x]xx in Eq. (1),
blu*(u=2)xlx in Eq. (2) and uxex in Eq. (3) are dispersive terms.
D () is Jumarie’s modified Riemann-Liouville derivative of order
o [15-17] defined in Section 2. The Jumarie’s modified Riemann-
Liouville derivative has many interesting properties. For example,
the «-order derivative of a constant is zero, and it can be ap-
plied to functions which are differentiable or not [17]. In the fol-
lowing we shall use at will and for convenience, the notations
D¥f(t) = f@(t) for the fractional derivative. As the variants of
K(m,n) equation, Eq. (1) and Eq. (2) emerge in nonlinear lattices
[18] and can be used to describe the motion of the diluted sus-
pension [19]. The fifth-order KdV-like equation (3) can be applied
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to study the motions of long waves in shallow water under grav-
ity and it also appears in the theory of quantum mechanics and
magneto-acoustic waves in plasma physics [20].

It is necessary to point out that, changing the integer order time
derivative into a fractional one in KdV-type equations (1)-(3) has
great physical impact. That’s because the integer order KdV-type
equations only consider the instant of time (local property), which
means the obtained soliton solutions may not confirm the solitary
waves in the real world very well. However, by introducing and
modulating the time-fractional derivative parameter «, this prob-
lem can be overcome. For example, when studying the electron-
acoustic waves in unmagnetized plasmas, the researchers intro-
duced the integer order KdV equation. However, the obtained soli-
ton solution underestimates the amplitude of the solitary waves by
more than 20%. To increase the amplitude, Prof. S.A. EI-Wakil et al.
converted the integer order KdV equation into a time-fractional
one [21] and the obtained results were in agreement with some
observations from the Viking satellite.

For better understanding the mechanisms of the complicated
nonlinear physical phenomena as well as further applying them
in practical life, searching for explicit solutions of the aforemen-
tioned three nonlinear time-fractional dispersive equations is of
great importance. In the past, many powerful methods have been
established and developed to obtain numerical and analytical so-
lutions of FDEs, such as finite difference method [22], Adomian
decomposition method [23], differential transform method [24],
fractional sub-ODE method [25], fractional variational iteration
method (FVIM) [26] and so on. Thanks to the efforts of many
researchers, several FDEs have been investigated, such as the
impulsive fractional differential equations [27], space- and time-
fractional advection-dispersion equation [28], fractional gener-
alized Burgers’ fluid [29], fractional heat- and wave-like equa-
tions [30], etc.

In this Letter, we apply the fractional variational iteration
method using He’s polynomials (FVIMHP) [31] proposed recently
for solving Egs. (1)-(3). As the modification of FVIM, the main
advantage of FVIMHP is that He's homotopy perturbation (He’s
polynomials) is introduced in the correct functional [32,33]. The
use of Lagrange multipliers and homotopy perturbation reduces
the successive application of the integral operator and the cum-
bersome huge computational work while still maintaining a very
high level of accuracy. Therefore, the FVIMHP needs less computing
time than FVIM. It is easy to see that the FVIMHP is formu-
lated by taking the full advantages of variational iteration method
(VIM) [34,35], homotopy perturbation method (HPM) [36-38] and
Jumarie’s modified Riemann-Liouville derivative.

This Letter is organized as follows: In Section 2, some basic def-
initions of fractional calculus and the main steps of FVIMHP are
given. In Section 3, we construct the compacton solutions and soli-
tary pattern solutions of Eqs. (1)-(3) via the FVIMHP. In Section 4,
some conclusions are given.

2. Fractional calculus and FVIMHP

Let f:R — R,t — f(t) denote a «-th continuous (but not nec-
essarily differentiable) function [39], 0 < o < 1. Yang’s local frac-
tional integral [40,41] in the interval [a, b] is defined as

b
1
ap f(O) = m / fOdn)”. (4)

The Jumarie’s modified Riemann-Liouville derivative of order « is
defined by the expression [16]
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and

f(a)(f)=(f(”)(t))(a7n), n<a<n+1, n>1. 7)

The integral with respect to (dt)“ is defined as the solution of
the fractional differential equation

dy = f(©)(dD)*, y(0) =0,

which is provided by the following result [17].
Let f(t) denote a continuous function, then the solution of the
Eq. (8) is defined by the equality

x>0, O<a<l1, (8)

t t
y=/f@x%f=a/ﬁ—€W”f@M§ O<a<l.  (9)
0 0

We present the essential steps of the fractional variational iter-
ation method using He’s polynomials as follows:

Step 1: Suppose that a nonlinear equation, say in two independent
variables x and ¢, is given by

D/ u(x,t) = L(u(x, 1)) + N(u(x, 1)) + g(x, 1), (10)

where Dg/(-) is the modified Riemann-Liouville derivative,
y >0, L is a linear operator, N is a nonlinear operator, u =
u(x,t) is an unknown function, and g(x,t) is the forcing
term.

Step 2: According to the FVIM, we can construct the following cor-
rect functional

Ugs1 (X, t) = ug(x, t) +013/{A(r)(D¥uk(x, 7)
— L(ug(x, 7)) = N(iig(x, 7)) — g(x, 7))},
(11)

where A is the Lagrange multiplier, which can be identified
optimally via the variational theory. The subscript k > 0
denotes the k-th approximation, the function &y is consid-
ered as a restricted variation, that is &1, = 0.

Step 3: We use HPM in the correction functional (11) as follows
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—g(x,r)>”, (12)
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