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We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in 
the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave 
field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller’s geometrical theory 
of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of 
interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, 
including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems 
with analogous topological defects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Topological defects may appear naturally during a symmetry-
breaking phase transition in various physical systems. One of the 
examples is a cosmic string – a long-lived topologically stable 
structure that may have been formed at phase transitions in the 
early Universe [1–3]. Cosmic strings are analogous to other linear 
defects found in condensed matter systems: vortex lines in liquid 
helium [4], flux tubes in type-II superconductors [5], disclinations 
in liquid crystals [6], in graphene [7], or in metamaterials [8–10].

The spacetime around a straight cosmic string is locally flat, 
but it globally has a conical topology that can give rise to a variety 
of observable phenomena [2,3]. The most evident way to detect 
cosmic strings is by means of gravitational lensing. The conical 
topology should produce double images of a distant source situ-
ated behind the string [11]. The images should be undistorted but 
they may overlap if the split angle, which is proportional to the 
string tension, is small. In such a case, the wave effects are ex-
tremely important as a probe in gravitational lensing [12], that was 
extensively studied for compact or point-like objects [13], but only 
a few studies are known for the strings [14–18].

In this Letter we show that the wave propagation in conical 
spacetime, caused by a cosmic string or similar topological de-
fects, can be effectively treated in the framework of the celebrated 
Arnold Sommerfeld’s half-plane diffraction problem [19–21]. In 
this way, we find analytical solutions in terms of Fresnel integrals, 
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that let us conclude that the wave effects in conical space are de-
termined by a unique parameter, the Fresnel zone number. For the 
wave effects to be detectable in a compact-mass gravitational lens, 
the wavelength λ should be comparable with the Schwarzchild ra-
dius Rs of the lens [12]. This condition cannot be applied to a 
string, a non-compact object with conical topology. Instead, we 
show that the diffraction effects caused by a string are of the 
leading order with respect to geometrical optics whenever the ob-
servation point (either in space or in frequency spectrum) belongs 
to the low-number Fresnel zone. This is in contrast to the case 
of a compact-mass lens, for which diffraction scales like O (λ/Rs). 
Basing on Keller’s geometrical theory of diffraction [22], we sug-
gest a simple procedure how the geometrical-optics approximation 
can be “improved” by adding just two additional paths correspond-
ing to diffraction. These are waves coming from the source to the 
observer but hitting the string following the shortest path. In this 
way, the interference effects will be taken into account to the lead-
ing order. Our results imply that if a cosmic string exists, it may be 
identified through a characteristic diffraction pattern in the energy 
spectrum of the observed signal. Finally, we show that if the string 
is on the line of sight, the wave amplitude fits the Cornu spiral – 
the prominent result for the Fresnel diffraction by a straight edge 
or a slit.

2. Spacetime of a cosmic string

We start with a spacetime metric for a static cylindrically sym-
metric cosmic string [11,23]

ds2 = −dt2 + dr2 + (1 − 4Gμ)2r2dϕ2 + dz2, (1)
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Fig. 1. Geodesics in the conical space on z = 0 plane: (a) curved spacetime; (b) flat 
spacetime with a deficit angle 2�. The cut half-plane S A is perpendicular to the 
plane of the figure with the edge S coinciding with the string. After the angular 
transformation the half-plane S A is converted to a wedge of two half-planes S A−
and S A+ , which should be identified.

where G is the gravitational constant, μ is the linear mass density 
of the string lying along the z-axis, (t , r, ϕ , z) are cylindrical coor-
dinates, and the system of units in which the speed of light c = 1
is assumed. With a new angular coordinate θ = (1 − 4Gμ)ϕ , the 
metric (1) takes a Minkowskian form

ds2 = −dt2 + dr2 + r2dθ2 + dz2, (2)

which is locally flat, but it globally has a conical topology, since a 
wedge of angular size 8πGμ is taken out from flat space and the 
two faces of the wedge are identified [2,11]. By introducing the 
deficit angle 2� with

� = 4πGμ, (3)

the angular coordinate θ spans the range 2π − 2�. Solutions of 
Hamilton’s equations [24] for both geometries are depicted in 
Fig. 1. One can see that geodesics for the metric (1) are curved 
and deflected an angle � [11,25]. However, in coordinates (2) they 
are just straight lines. Since geodesics passing on opposite sides 
of the string eventually cross, one should expect interference or 
diffraction effects.

3. Wave equation in conical space

We consider the question of finding a solution of the wave 
equation in background (1) corresponding to a time harmonic dis-
tant source, so that the incident waves are plane waves. In order 
to reduce the problem to two dimensions, the waves are assumed 
to be emitted in the direction orthogonal to the string. Similarly to 
Ref. [17], we write the wave equation for a scalar field U (r, ϕ) as

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

β2r2

∂2

∂ϕ2
+ ω2

)
U = 0, (4)

where we denoted β = 1 − �/π . We assume that Eq. (4) is valid 
for electromagnetic waves, as well as for gravitational waves when 
the effect of gravitational lensing on polarization is negligible and 
both types of waves can be described by a scalar field [26]. A plane 
wave of unit amplitude incident from the direction ϕ0 is described 
by

U = eikr cos{β(ϕ−ϕ0)}. (5)

Next, unlike Ref. [17], we perform the coordinate transformation 
taking advantage of the flat background (2). To do that, we place 
the cut line S A strictly perpendicular to the wavefront of the in-
cident wave, as shown in Fig. 1(a), so we get ∂ϕU = 0 at the cut. 
Then, we assign the values ϕ−

0 = −π to the left and ϕ+
0 = π to 

the right of the line S A. After angular transformation θ = βϕ , 

Fig. 2. Plane wave grazing a half-plane screen (thick line). The entire space is split 
into two regions: illuminated (I), shadow (II).

the line S A converts to the wedge S A− , S A+ given by the an-
gles ±(π − �). The incident field (5) will now be represented by 
two plane waves

U = eikr cos(θ±�) (6)

incoming from the directions ±(π − �) with wavefronts perpen-
dicular to the faces of the wedge and propagating in a flat back-
ground [see Fig. 1(b)]. As we are going to show now, this problem 
can be reduced to the canonical problem of diffraction on a per-
fectly conducting half-plane screen solved exactly by Sommerfeld 
[19–21].

Let us consider a single plane wave grazing an infinite half-
plane screen, as shown in Fig. 2. Following Sommerfeld [20], the 
exact solution for the field at any point O (r, α) can be written in 
the compact form

U = e−ikr cos αF
(√

2kr cos
α

2

)
, (7)

where r is the distance from the screen edge, α is the angle mea-
sured from the surface of the screen facing the source, and F(u) =
e−iπ/4 π−1/2

∫ u
−∞ eis2

ds is the Fresnel integral [27]. In Eq. (7) we 
have taken into account the zero angle of incidence and the Neu-
mann boundary condition on the screen, ∂αU (r, 0) = 0. It can be 
verified that solution (7) contains both the geometrical-optics (GO) 
and the diffracted (D) fields. Indeed, for the angles 0 < α < π , in 
the limit kr → ∞ far away from the edge, one gets F → 1 and 
U = e−ikr cos α , which is the GO incident field. Whereas, for the an-
gles π < α < 2π , one obtains F → 0 giving U = 0 at infinity. The 
Fresnel function F smooths the discontinuity of the GO solution 
across the shadow boundary α = π making the total field continu-
ous everywhere. This smooth transition constitutes the diffraction 
phenomenon [20]. It should also be noted that the original Som-
merfeld problem treats two possible boundary conditions on the 
screen (Dirichlet or Neumann) depending on the polarization of 
the incident field. However, for grazing incidence, only one polar-
ization can propagate which corresponds to the Neumann condi-
tion. On the other hand, the zero field condition is unphysical for 
the conical space we consider.

Having defined the solution for a single half-plane, we now 
construct the wave field corresponding to the geometry of Fig. 1(b), 
in which we have two plane waves (6) grazing the faces of the 
wedge. Substituting grazing angles: α = π −� ∓ θ into Eq. (7), we 
obtain the total field U (r, θ) at the observation point O

U = eikr cos(�+θ)F(w+) + eikr cos(�−θ)F(w−) (8)

with w± = √
2kr sin[(� ± θ)/2]. It describes the wave effects in 

the gravitational lensing by a cosmic string. It is easy to verify that 
for � = 0, it reduces to the unlensed field U0 = eikr cos θ , which is 
a usual plane wave in Minkowskian space.

For further analysis Eq. (8) can be rewritten in a more con-
venient form in terms of the eikonals s± = r cos(� ± θ) of the 
GO waves. The arguments of the Fresnel function become w± =
σ±√

k(r − s±) where σ± ≡ sgn(� ± θ) are sign functions giving 
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