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Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann 
method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on 
permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt 
number for different cylinder locations are unequal even with the same number and size of cylinders. 
New correlations for the permeability and coefficient b′ Den of the Forchheimer equation are proposed 
for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general 
set of heat transfer correlations is proposed and compared with existing experimental data and empirical 
correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat 
transfer is found to be accurate considering the effect of porosity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Flow and heat transfer through porous medium are undoubt-
edly encountered in many science and engineering fields because 
of unique structures and characteristics. The domain of appli-
cation is widely spread, ranging from hydrology, civil, and me-
chanical engineering to chemical and petroleum engineering, the 
thermal management of electronic cooling, and improvement of 
performance of heat transfer systems [1–4]. Usually, fluid flows 
in a porous medium obey the Darcy law, i.e., the linear relation 
between the average velocity and the pressure gradient. As the 
Reynolds number increases to a critical value, the relationship be-
comes nonlinear. Over the last several decades, fluid flows and heat 
transfer in porous medium have been studied experimentally and 
theoretically by many authors.

Coulaud et al. [5] and Lee and Yang [6] carried out calculations 
for two-dimensional (2D) flows across banks of circular cylinders 
to examine flow characteristics and devise drag correlations. Kuwa-
hara et al. [7] investigated a collection of square rods to develop a 
permeability–porosity relationship that ranges from zero to unity. 
Nakayama et al. [8] presented Nusselt number expressions for the 
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interstitial heat transfer coefficients on both consolidated and un-
consolidated porous media.

A number of issues arise when simulating the pore-scale flow 
field with the traditional Navier–Stokes solver, such as extensive 
computational time, poor convergence, and numerical instability, 
which result from the narrowness of the flow passage. In recent 
years, lattice Boltzmann method (LBM) has drawn considerable at-
tention as a promising tool for simulating flows through a complex 
geometry. Succi et al. [9] and Cancelliere et al. [10] used LBM 
to estimate the permeability of a three-dimensional (3D) porous 
media with randomly distributed inclusions. Nabovati et al. [11]
simulated the random porous media by placing identical rectangles 
with a random distribution and free overlapping. The simulations 
clearly indicate that the random porous media is less permeable 
than the regularly ordered medium for the same porosity. Fluid 
flow in random fibrous media is simulated using LBM and a semi-
empirical constitutive model is developed for the permeability as 
a function of their porosity and of the fiber diameter [12]. Chai
et al. [13] investigated the non-Darcy effect on incompressible 
flows through disordered porous media. As an extension to the 
common empirical expressions, a general correlation was proposed 
to include the non-Darcy effect. Cai et al. [14] studied the fluid–
solid coupling heat transfer in fractal porous medium. A numerical 
simulation was conducted to investigate the influences of pressure 
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Nomenclature

c lattice streaming speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
f i stream distribution function
gi temperature distribution function
Den effective diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
K Darcy permeability
Nu Nusselt number
Pr Prandtl number
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
C D drag coefficient
St Strouhal number
x, y Cartesian coordinates
f eq

i equilibrium distribution function for f i

geq
i equilibrium distribution function for gi

Ke effective permeability
h average convective heat transfer coefficient
Re Reynolds number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
Uin inlet velocity of impinging jet flow. . . . . . . . . . . . . . . . m/s
CL lift coefficient

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
ε porosity
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
λ thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K

drop and porosity on fluid flows and the effect of the thermal con-
ductivity ratio of solid matrix to fluid on heat transfer.

In practice, the structure of porous medium is random and 
irregular. Literature dealing with permeability is vast, but most 
methodologies, and in particular those based on experimentally-
based correlations, suffer from lack of generality primarily due 
to the assumptions that they embody and randomness of porous 
medium. Detailed studies on various porous structures, shapes of 
composed materials, and porosities remain limited, and few stud-
ies focus on heat transfer through random porous medium with 
different cylinder sizes. Meanwhile, it is difficult to carry out the 
experiment and traditional numerical simulation at pore level for 
random porous medium with Gaussian distributed circular cylin-
ders. A novel double distribution function approach leaning on the 
MRT-LBE with D2Q9 for solving the mass and momentum con-
servation equations, and the MRT-LBE with D2Q5 for simulating 
the temperature is validated by Moussaoui et al. [15,16]. There-
fore, the objectives of this paper are two-fold. The first objective is 
to extend the permeability correlation and coefficient b′ Den of the 
Forchheimer equation to the random porous medium with Gaus-
sian distributed circular cylinders using double MRT relaxation 
time Lattice Boltzmann method. The second objective is to obtain 
the heat transfer correlations considering the effect of porosity on 
random porous medium with Gaussian distributed circular cylin-
ders using double MRT relaxation time Lattice Boltzmann method.

2. Numerical methods

2.1. D2Q9-MRT model for fluid flow

The collision operator of the MRT model can be generalized as,

f i(x + eα�t, t + �t) − f i(x, t) = −Ω
(

f i(x, t) − f eq
i (x, t)

)
. (1)

The parameter Ω is the collision matrix, f = ( f0, f1, f2, f3, f4,

f5, f6, f7, f8)
T, and T denotes the transpose operator. This model 

can conveniently accomplish the collision process in the moment 
space. Hence, Eq. (1) transform to the following form:

f i(x + eα�t, t + �t) − f i(x, t)

= −M−1S
(
m(x, t) − meq

i (x, t)
)
, (2)

where M is a 9 ×9 matrix that transforms f i and f eq
i into the mo-

ment space with m = M f and meq = M f eq, respectively. Matrix 
M is expressed as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The inverse of matrix M is

M−1 = 1

36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −4 4 0 0 0 0 0 0
4 −1 −2 6 −6 0 0 9 0
4 −1 −2 0 0 6 −6 −9 0
4 −1 −2 −6 6 0 0 9 0
4 −1 −2 0 0 −6 6 −9 0
4 2 1 6 3 6 3 0 9
4 2 1 −6 −3 6 3 0 −9
4 2 1 −6 −3 −6 −3 0 9
4 2 1 6 3 −6 −3 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The moment vector m is m = (ρ, e, ε, jx, qx, j y, qy, pxx, pxy)
T.

The equilibrium of moment meq is as follows:

meq
0 = ρ

meq
1 = −2ρ + 3

(
j2
x + j2

y

)
meq

2 = ρ − 3
(

j2
x + j2

y

)
meq

3 = jx

meq
4 = − jx

meq
5 = j y

meq
6 = − j y

meq
7 = (

j2
x − j2

y

)
meq

8 = jx j y (3)

S is a diagonal relaxation matrix:

S = diag(1.0,1.4,1.4, s3,1.2, s5,1.2, s7, s8)

where s7 = s8 = 2/(1 + 6υ), and s3 and s5 arbitrary, can be set 
to 1.0.

The macroscopic fluid variables, namely, density and velocity, 
are defined by sums over the distribution functions:
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