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Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found 
for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches 
a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum 
conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is 
remarkable as the minimum conductance attainable in graphene superlattices was believed to appear 
at TDPs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has attracted great interest in the scientific commu-
nity since its realization in the laboratory [1,2], including its possi-
ble applications in spintronics [3]. Study has shown that the elec-
trical transport in graphene is ballistic up to lengths ∼0.5 to 1 μm, 
which is consistent with results from quantum Hall measure-
ments [4]. As the Dirac point is a very special point in graphene, 
the properties of this point, such as transport and the Fano factor 
(the ratio of the noise power to the mean current), have been stud-
ied extensively in both monolayer and bilayer graphene [5–10]. 
On the other hand, superlattices have been used in fields such 
as electronics [11,12], spintronics [13–15], and photonics [16–19]. 
Since the realization of graphene superlattices [20,21], the trans-
port properties at the Dirac point in graphene superlattices have 
also been studied [22–27]. Some studies [28–30] have shown that 
1D superlattice systems may be achieved experimentally by using 
electrodes that modulate the Dirac cone shift into a superlattice 
potential.

The Fano factor of graphene has been the focus of theoretical 
and experimental studies of graphene, since it is strongly related to 
a unique spectrum of excitations in the material, namely the two-
dimensional relativistic spectrum of the Dirac point. One of the 
remarkable features of graphene is its finite minimum conductivity. 
This is not only attractive conceptually, but is also important for 
possible applications, such as ballistic field-effect transistors [4]. It 
has been found that the minimum conductivity of order e2/h at 
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the Dirac point is associated with a maximum of the Fano fac-
tor [9]. Moreover, the Fano factor at the Dirac point is F = 1/3
for short and wide graphene strips. This is the same value as for 
a disordered metal. This result is remarkable because the classical 
dynamics of the Dirac fermions are ballistic. Interestingly, the Fano 
factor remains F = 1/3 at the Dirac point in bilayer graphene [10]. 
At the Dirac point of charge neutrality, the bilayer transmits as two 
independent monolayers in parallel. Both the current and noise are 
resonant at twice the monolayer value, so that their ratio, the Fano 
factor, has the same value as in monolayer graphene. For graphene 
superlattices, the Dirac point appears, at which the conductance 
is a minimum and the Fano factor reaches its maximum value of 
1/3. These conclusions are the same as those for monolayer and 
bilayer graphene [9,10]. In other words, the conductance minimum 
with a Fano factor equal to 1/3 at the Dirac point is observed in 
monolayer, bilayer, and superlattice graphene. In addition, emer-
gence of extra Dirac points in the 1D graphene superlattices has 
been proposed [31–33]. The energy of the extra Dirac point is the 
same with that of the original Dirac point. Since these Dirac points 
have been proposed, they are called TDPs in this study. For 2D 
graphene superlattices with triangular or hexagonal potential [22,
34], new Dirac point with energy different from the TDP has been 
proposed. One may expected this result since the geometry is sim-
ilar to graphene.

Since the TDPs are very special points for graphene, it is inter-
esting to search for other points with similar transport properties. 
Is it possible to find that the conductance minimum also occurs at 
a point other than the TDP? If the answer is yes, the concept of 
a minimum conductance at the TDP needs to be modified. What 
are the conditions required for this intriguing phenomenon? Al-
though the conductance and Fano factor of graphene superlattices 
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Fig. 1. The conductance and (b) Fano factor as a function of Fermi energy for the graphene superlattice (AB)20. DdB ,U B , AdB ,U B , and BdB ,U B denote the locations of the 
first, second, and third local conductance minima for specific dB (nm) and U B (meV). The other parameters are dA = 14 nm, U A = 40 meV. The location of the first local 
conductance minimum corresponds to the TDP. (c) The transmission spectrum and (d) the corresponding band structure for the graphene superlattice. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

have been studied, these questions have not yet been exploited. In 
this study, these questions will be investigated.

2. Model and formulation

Consider a periodic monolayer graphene superlattice structure 
(AB)n , where n is the number of cells, A and B are different bar-
riers with barrier widths dA and dB and electrostatic potentials 
U A and U B , respectively. It is assumed that there is no impuri-
ties or defect in graphene. Study has shown that the theory under 
the assumption of impurity-free transport still gives a qualitative 
agreement with experiment [35]. Therefore, the effect of this in-
teraction on the unique transport property of QDP can be limited, 
even if the electrons near QDPs can interact with electrons in the 
bulk states via unavoidable impurity scattering. The graphene su-
perlattice is placed in the x–y plane with the growth direction 
along the x-axis. In the presence of a potential U (x), the Hamilto-
nian [8,36] for carriers near the K point can be written as

Ĥ = v F σ · p̂ + U (x) Î, (1)

where v F ≈ 106 m/s is the Fermi velocity, σ = (σx, σy) are the 
Pauli matrices, p̂ = (px, p y) are the momentum operators, and Î is 
a 2 × 2 matrix. The system studied in this paper is homogeneous 
in the y direction. The wave function inside the jth potential can 
be expressed as � j =

{
a j

(
1

eiθ j

)
eiqx, j ·x + b j

(
1

−e−iθ j

)
e−iqx, j ·x

}
eiky ·y , 

where a j and b j are the coefficients of incident and reflected 
waves, cos θ j = qx, j/k j , k j = (E − U j)/h̄v F , ky is the y compo-
nent of the wave vector. qx, j is the x component of the wave 
vector, which is qx, j = sign(k j)

√
k2

j − k2
y for k2

j > k2
y and qx, j =

i
√

k2
y − k2

j for k2
j < k2

y . The transmission probability of the system 

is given by Tm = 1 − |t21/t22|2, where ti j is an element of the 
total transfer matrix T . The total transfer matrix is expressed as 
T = N−1

S (
∑

j M j N−1
j )NC , where the subscripts S and C denote the 

incident and exit region, M j =
(

eiqx, j ·d j e−iqx, j ·d j

ei(qx, j ·d j+θ j ) −e−i(θ j+qx, j ·d j )

)
and N j =(

1 1
eiθ j −e−iθ j

)
. The normalized conductance of the system at zero 

temperature can be written as G/G0 = ∫ π
2

0 Tm(E, ky) cos θ0dθ0. The 

Fano factor is given by F = ∫ π
2

− π
2

Tm(E, ky)[1 − Tm(E, ky)] cos θ0dθ0/

∫ π
2

− π
2

Tm(E, ky) cos θ0dθ0. Based on the Bloch theorem, the band 
structure for a graphene superlattice with n = ∞ can be obtained 
as cos(K D) = (p11 + p22)/2, where pij is the element of the ma-
trix P = N−1

A (M A N−1
A MB N−1

B )N A , D = dA + dB is the width of a 
unit cell and K is the Bloch wave number.

3. Results and discussion

Fig. 1 shows the conductance, Fano factor, and transmission 
spectra for the graphene superlattice. The location of the TDP can 
be calculated as E = (U A +U B)/2 +[dA/(dA +dB) −1/2](U A −U B), 
which is E = −14.5 meV in the present case. In Fig. 1(a), there 
are three local conductance minima denoted as DdB ,U B , AdB ,U B , 
and BdB ,U B . The conductance minimum at DdB ,U B is caused by 
the TDP. The Fano factor at DdB ,U B is approximately 1/3, as shown 
in Fig. 1(b). This is not a new discovery for this paper, since many 
papers have shown that the conductance minimum typically oc-
curs at the TDP [9,10,22–26]. However, it is interesting to find 
that there is another conductance minimum denoted as A30,−40, 
at which the conductance is approximately equal to the one at 
D30,−40. Moreover, the Fano factor at A30,−40 is the same as the 
one at D30,−40. Since the latter is known to be the TDP, the former 
is thus named QDP due to its similarity to the TDP. The energy of 
the QDP is different from that of the TDP. In Fig. 5(a) of Ref. [24], 
although there is a conductance minimum at E = 92 meV, the 
Fano factor at this point is not 1/3. Therefore, this point is not a 
QDP. The QDP in Fig. 1 is achieved through a proper design of the 
parameters of graphene superlattices, such as the barrier width 
and barrier height. In addition, there is a special point denoted 
by B30,−40.

However, the Fano factor at B30,−40 is not 1/3. Therefore, this 
point is not a QDP. Fig. 1(c) shows the transmission spectrum of 
the graphene superlattice. At the energies corresponded to D30,−40
and A30,−40 in Fig. 1(a), a high transmission probability only oc-
curs at small angles, leading to a conductance minimum. Although 
the transmission probability decreases to zero quickly as the angle 
increases from zero at the energy corresponding to B30,−40, the 
transmission probability becomes non-zero again (denoted by the 
white rectangle). Therefore, the conductance at B30,−40 is larger 
than those at D30,−40 and A30,−40. The interesting angular depen-
dence of the transmission spectrum at B30,−40 can be explained by 
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