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Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found
for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches
a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum
conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is
remarkable as the minimum conductance attainable in graphene superlattices was believed to appear
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1. Introduction

Graphene has attracted great interest in the scientific commu-
nity since its realization in the laboratory [1,2], including its possi-
ble applications in spintronics [3]. Study has shown that the elec-
trical transport in graphene is ballistic up to lengths ~0.5 to 1 pm,
which is consistent with results from quantum Hall measure-
ments [4]. As the Dirac point is a very special point in graphene,
the properties of this point, such as transport and the Fano factor
(the ratio of the noise power to the mean current), have been stud-
ied extensively in both monolayer and bilayer graphene [5-10].
On the other hand, superlattices have been used in fields such
as electronics [11,12], spintronics [13-15], and photonics [16-19].
Since the realization of graphene superlattices [20,21], the trans-
port properties at the Dirac point in graphene superlattices have
also been studied [22-27]. Some studies [28-30] have shown that
1D superlattice systems may be achieved experimentally by using
electrodes that modulate the Dirac cone shift into a superlattice
potential.

The Fano factor of graphene has been the focus of theoretical
and experimental studies of graphene, since it is strongly related to
a unique spectrum of excitations in the material, namely the two-
dimensional relativistic spectrum of the Dirac point. One of the
remarkable features of graphene is its finite minimum conductivity.
This is not only attractive conceptually, but is also important for
possible applications, such as ballistic field-effect transistors [4]. It
has been found that the minimum conductivity of order e?/h at
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the Dirac point is associated with a maximum of the Fano fac-
tor [9]. Moreover, the Fano factor at the Dirac point is F =1/3
for short and wide graphene strips. This is the same value as for
a disordered metal. This result is remarkable because the classical
dynamics of the Dirac fermions are ballistic. Interestingly, the Fano
factor remains F = 1/3 at the Dirac point in bilayer graphene [10].
At the Dirac point of charge neutrality, the bilayer transmits as two
independent monolayers in parallel. Both the current and noise are
resonant at twice the monolayer value, so that their ratio, the Fano
factor, has the same value as in monolayer graphene. For graphene
superlattices, the Dirac point appears, at which the conductance
is @ minimum and the Fano factor reaches its maximum value of
1/3. These conclusions are the same as those for monolayer and
bilayer graphene [9,10]. In other words, the conductance minimum
with a Fano factor equal to 1/3 at the Dirac point is observed in
monolayer, bilayer, and superlattice graphene. In addition, emer-
gence of extra Dirac points in the 1D graphene superlattices has
been proposed [31-33]. The energy of the extra Dirac point is the
same with that of the original Dirac point. Since these Dirac points
have been proposed, they are called TDPs in this study. For 2D
graphene superlattices with triangular or hexagonal potential [22,
34], new Dirac point with energy different from the TDP has been
proposed. One may expected this result since the geometry is sim-
ilar to graphene.

Since the TDPs are very special points for graphene, it is inter-
esting to search for other points with similar transport properties.
Is it possible to find that the conductance minimum also occurs at
a point other than the TDP? If the answer is yes, the concept of
a minimum conductance at the TDP needs to be modified. What
are the conditions required for this intriguing phenomenon? Al-
though the conductance and Fano factor of graphene superlattices
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Fig. 1. The conductance and (b) Fano factor as a function of Fermi energy for the graphene superlattice (AB)%. Dyy.ug» Adg,ug, and By, y, denote the locations of the
first, second, and third local conductance minima for specific dg (nm) and U (meV). The other parameters are d4 = 14 nm, Us = 40 meV. The location of the first local
conductance minimum corresponds to the TDP. (c) The transmission spectrum and (d) the corresponding band structure for the graphene superlattice. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.)

have been studied, these questions have not yet been exploited. In
this study, these questions will be investigated.

2. Model and formulation

Consider a periodic monolayer graphene superlattice structure
(AB)", where n is the number of cells, A and B are different bar-
riers with barrier widths d4 and dp and electrostatic potentials
Ua and Up, respectively. It is assumed that there is no impuri-
ties or defect in graphene. Study has shown that the theory under
the assumption of impurity-free transport still gives a qualitative
agreement with experiment [35]. Therefore, the effect of this in-
teraction on the unique transport property of QDP can be limited,
even if the electrons near QDPs can interact with electrons in the
bulk states via unavoidable impurity scattering. The graphene su-
perlattice is placed in the x-y plane with the growth direction
along the x-axis. In the presence of a potential U(x), the Hamilto-
nian [8,36] for carriers near the K point can be written as

H=vro-p+UWXI, (1)

where vp ~ 10% m/s is the Fermi velocity, o = (ox, 0y) are the

Pauli matrices, p = (px, py) are the momentum operators, and Tis
a 2 x 2 matrix. The system studied in this paper is homogeneous
in the y direction. The wave function inside the jth potential can
be expressed as W; = {aj (e,»lgj ) eldxiX 4 b; (781,,'91. ) e*iQx.j‘x} elkyy,
where a; and b; are the coefficients of incident and reflected
waves, cosfj = qx j/kj, kj = (E — Uj)/AvF, ky is the y compo-
nent of the wave vector. gy is the x component of the wave

vector, which is qx j = sign(k;) k? — k3 for k? > k3 and qxj =

i /kf, — k? for k? < kf,. The transmission probability of the system

is given by T, =1 — |t21/t22]%, where tjj is an element of the
total transfer matrix T. The total transfer matrix is expressed as
T= N§1 (Zj Mij_1)Nc, where the' subscripts S and C denote the
elx.jdj oix,jdj ) and Nj =

incident and exit region, M = (ei(qm_di 1) iy ay )

(e’l’f _61_,-91,). The normalized conductance of the system at zero
T
temperature can be written as G/Go = fOZ T (E, ky) cosBpdbp. The

z
2

Fano factor is given by F = f,z T (E, ky)[1—Tm(E, ky)]cosBodby/
2

ffg T (E, ky) cosfpdfp. Based on the Bloch theorem, the band
2

structure for a graphene superlattice with n = oo can be obtained

as cos(KD) = (p11 + p22)/2, where pjj is the element of the ma-

trix P = N, (MsN,'MgN;")N4a, D =da +dg is the width of a

unit cell and K is the Bloch wave number.

3. Results and discussion

Fig. 1 shows the conductance, Fano factor, and transmission
spectra for the graphene superlattice. The location of the TDP can
be calculated as E = (Us+Up)/2+[da/(da+dp)—1/2](Us—Up),
which is E = —14.5 meV in the present case. In Fig. 1(a), there
are three local conductance minima denoted as Dgg ug, Adg,u;.
and Bg, y,. The conductance minimum at Dg, y, is caused by
the TDP. The Fano factor at Dy, y, is approximately 1/3, as shown
in Fig. 1(b). This is not a new discovery for this paper, since many
papers have shown that the conductance minimum typically oc-
curs at the TDP [9,10,22-26]. However, it is interesting to find
that there is another conductance minimum denoted as Asp _ao,
at which the conductance is approximately equal to the one at
D30,—40. Moreover, the Fano factor at A3g 40 is the same as the
one at D3p 4. Since the latter is known to be the TDP, the former
is thus named QDP due to its similarity to the TDP. The energy of
the QDP is different from that of the TDP. In Fig. 5(a) of Ref. [24],
although there is a conductance minimum at E = 92 meV, the
Fano factor at this point is not 1/3. Therefore, this point is not a
QDP. The QDP in Fig. 1 is achieved through a proper design of the
parameters of graphene superlattices, such as the barrier width
and barrier height. In addition, there is a special point denoted
by B3o,—40.

However, the Fano factor at B3p _40 is not 1/3. Therefore, this
point is not a QDP. Fig. 1(c) shows the transmission spectrum of
the graphene superlattice. At the energies corresponded to D3g,_40
and Asp 40 in Fig. 1(a), a high transmission probability only oc-
curs at small angles, leading to a conductance minimum. Although
the transmission probability decreases to zero quickly as the angle
increases from zero at the energy corresponding to Bsp,_40, the
transmission probability becomes non-zero again (denoted by the
white rectangle). Therefore, the conductance at B3 _40 is larger
than those at D3g 40 and A3p _40. The interesting angular depen-
dence of the transmission spectrum at B3p,_40 can be explained by
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