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The tunneling junction between one-dimensional topological superconductor and integer (fractional) 
topological insulator (TI), realized via point contact, is investigated theoretically with bosonization 
technology and renormalization group methods. For the integer TI case, in a finite range of edge 
interaction parameter, there is a non-trivial stable fixed point which corresponds to the physical picture 
that the edge of TI breaks up into two sections at the junction, with one side coupling strongly to the 
Majorana fermion and exhibiting perfect Andreev reflection, while the other side decouples, exhibiting 
perfect normal reflection at low energies. This fixed point can be used as a signature of the Majorana 
fermion and tested by nowadays experiment techniques. For the fractional TI case, the universal low-
energy transport properties are described by perfect normal reflection, perfect Andreev reflection, or 
perfect insulating fixed points dependent on the filling fraction and edge interaction parameter of 
fractional TI.

© 2016 Elsevier B.V. All rights reserved.

1. introduction

Recently, the study of topological superconductors which sup-
port Majorana fermion excitations has been a focus of theoreti-
cal and experimental studies in condensed matter physics [1–3]. 
Majorana fermions being their own anti-particles have exotic non-
Abelian braiding statistics and great potential in the applications 
of fault-tolerant topological quantum computation [4]. There are 
many proposals which allow us to engineer topological supercon-
ductor (TSC), based on proximity coupling to s-wave supercon-
ductors. These include topological insulators [5,6], semiconduc-
tor quantum wires [7,8], and chains of magnetic adatoms [9–13]. 
Among these proposals, the most promising candidate for the ex-
perimental realization is the semiconductor quantum wires pro-
posal [1,14]. The experimental evidences of Majorana fermions 
have been shown in spin–orbit coupled quantum wire model 
[15–17]. All other proposals are being actively pursued [18,19].

Because of these intrinsically fascinating of Majorana fermions, 
there are many interesting transport properties and critical points 
when TSC couples to other materials [20–33]. A junction between 
a TSC and a Fermi lead (or interacting lead) is predicted to exhibit 
perfect Andreev reflection at low energies [20,23]. Further, a novel 
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type of quantum frustration and quantum critical points appear at 
low energies when one-dimensional (1D) TSC couples to two in-
teracting leads or an interacting lead with two channels [23–25]. 
At this critical point, the perfect Andreev reflection occurs in one 
interacting lead (one channel) and perfect normal reflection in the 
other. The tunneling junction between a TSC with chiral Majorana 
liquid at the edge and a helical Luttinger liquid is studied [28], the 
main conclusion of which is that at low energies, the helical Lut-
tinger liquids is cut into two separated half wires by backscattering 
potential and the tunneling between the Majorana liquid and the 
helical Luttinger liquid is forbidden. The perfect Andreev transmis-
sion (the reflected hole goes into a different lead from where the 
electron arrived) can occur when the edge of topological insulator 
(TI) contacts with a Kramers pair of Majorana fermions in TSC [33].

Usually, the quantum wires with electron–electron interaction 
are described by Luttinger liquids theory [34,35] and the low-
energy physics of the tunneling junctions between TSC and in-
teracting quantum wires are analyzed by renormalization group 
method [23–31]. These interacting quantum wires are topologi-
cal trivial systems. In contrast, the interplay of the TSC and other 
topological matters may result in novel and interesting transport 
properties. Recently, we have studied the point contact tunneling 
junction between 1D TSC and single-channel quantum Hall (QH) 
liquids [36]. For the ν = 1 integer QH liquid, the perfect Andreev 
reflection with quantized zero-bias tunneling conductance 2e2/h
is predicted to occur at zero temperature and voltage, which is 
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Fig. 1. Schematic illustration of the tunneling junction between TSC and TI. The edge 
of TI can be described in terms of two bosonic fields φα . The 1D TSC is characterized 
by the Majorana fermions γ and γ ′ .

caused by Majorana fermion tunneling not by the Cooper-pair tun-
neling. The quantized conductance can serve as a definitive finger-
print of a Majorana fermion. However, for the Laughlin fractional 
QH liquid cases, the universal low-energy transport is governed by 
the perfect normal reflection fixed point with vanishing zero-bias 
tunneling conductance.

The edges states of two-dimensional (2D) integer TI, known as 
helical liquid, are topologically protected by time-reversal sym-
metry. The localized Majorana modes emerge at interface of 
superconductor-ferromagnet junction on the edge of 2D TI [6,37]. 
The different geometries of TSC coupling with the edge of 2D TI 
have been investigated [28,32,33]. The fractional TI [38–43], which 
is the strongly interacting version of 2D TI, can be regarded as 
the generalization of the fractional QH liquids to time-reversal-
invariant systems. The simplest case of a fractional TI consists 
of two decoupled copies of a Laughlin fractional QH states with 
opposite spin polarizations. The parafermions (fractionalizing Ma-
jorana fermions) can be obtained at the interface between a SC 
and a ferromagnet along the edge of fractional TI [44–47]. Due to 
these intriguing and exotic properties, it is of both theoretical and 
practical interest to investigate the transport properties of junction 
between the TSC and integer (fractional) TI.

The content of the paper is organized as follows. In Sec. 2, 
using bosonization technology and renormalization group meth-
ods, we firstly research the tunneling transport signatures of 1D 
TSC and integer TI. In a finite range of edge interaction param-
eter, the edge of TI breaks up into two sections at the junction, 
with one side having perfect Andreev reflection due to Majorana 
fermion tunneling, while the other side decouples, having perfect 
normal reflection. This physical picture of our setup can be tested 
by present experimental techniques. Next, we calculate the phase 
diagram of the fractional TI case. In Sec. 3, we make discussions 
and concluding remarks.

2. Theory and discussion

In this section, we consider the point contact tunneling junc-
tion of 1D TSC and filling fraction ν = 1/m (m is an odd integer) 
fractional TI, as shown in Fig. 1. When m = 1, the fractional TI 
degenerates into 2D topological insulator. Next, we will use TI to 
denote the integer and fractional TI, except where confusion might 
result from these abbreviations.

The 1D TSC is characterized by the two Majorana fermions γ
and γ ′ at end points, which can be obtained by a spin–orbit cou-
pled quantum wire subjected to a magnetic field and proximate to 
an s-wave superconductor [7,8]. We assume all the important en-
ergy scales are smaller than the superconducting energy gap and 
the 1D TSC is sufficiently long so that Majorana fermion γ ′ do not 
couple to electrons in the TI. The fractional TI we analyze consists 
of two coupled fractional QH states, in which electrons of spin up 
form a Laughlin fractional QH states with filling fraction ν↑ = 1/m

and electrons of spin down form a Laughlin fractional QH states 
with filling fraction ν↓ = −1/m. The edge states of the TI are heli-
cal Luttinger liquid and the top edge of TI connects leads μ1 and 
μ2. Here, we label the right and left sides of junction by x > 0 and 
x < 0 respectively, and assume that the two leads are infinitely far 
away.

The Hamiltonian of the tunneling junction can be expressed as

H = H0 + HT (1)

where H0 is the Hamiltonian of TI edge theory and H T tunneling 
Hamiltonian.

Firstly, we discuss the edge theories (helical Luttinger liquids) 
of integer TI [48,49] and fractional TI [39,40,50]. Here, we express 
these theories within a unified framework. When m = 1, these re-
duce to integer TI case. The edges of TI can be described by two 
chiral bosonic quantum fields φα and the density operators are

ρα = 1

2π
∂xφα (2)

where α = R (right-mover with spin up), L (left-mover with spin 
down).

The boson fields φα satisfy the Kac–Moody commutation rela-
tions[
φα (x) ,φβ

(
x′)] = (σz)αβ

iπ

m
sgn(x − x′) (3)

Because of the time-reversal symmetry, the Hamiltonian of the 
edge of the TI is

H0 =
∫

dx
[
πmυF

(
ρ2

R + ρ2
L

)
+ 2g2ρRρL + g4

(
ρ2

R + ρ2
L

)]
(4)

where g2 and g4 are the amplitudes for dispersion and forward 
scattering processes.

To simplify our derivation, we introduce the fields

ϕ = 1

2
(φR + φL) , θ = 1

2
(φR − φL) (5)

According to the theory of Luttinger liquids [34,35], we can ex-
press the Hamiltonian as

H0 = mu

2π

∫
dx

[
K (∂xθ)2 + 1

K
(∂xϕ)2

]
(6)

with

K =
√

πmυF + g4 − g2

πmυF + g4 + g2

u =
√(

1 + g4

πmυF

)2

−
(

g2

πmυF

)2

where K < 1 (K > 1) for repulsive (attractive) edge interaction, and 
K = 1 corresponds to a noninteracting edge. For the noninteracting 
edge, the fractional TI can be substituted by a simple electron–hole 
bilayer where the two layers are in a Laughlin fractional QH states 
with filling fraction ν = ±1/m.

The electron creation operators can be expressed as

�
†
α (x) = �αeim(σz)ααφα (7)

with �α the Klein factor that is used to ensure the correct anti-
commutation relations between different fermion species and obey 
the following commutation relations

�
†
α = �α,

{
�α,�β

} = 2δαβ,
{
�α,γβ

} = 0 (8)

From the first relation above, we can view Klein factors as addi-
tional Majorana fermions, which is important for studying related 
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