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We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the 
diffusion times of innovation or information in networks with a scale-free structure, typical of regions 
where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We 
consider both the diffusion peak times of the total population and of the link classes. In the familiar 
trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in 
a predictable way. In a major departure from the standard model, we model a trickle-up process by 
introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning 
them into stiflers) and a stochastic term which represents the erratic generation of innovation at the 
periphery of the network. The results confirm the robustness of the Bass model and expand considerably 
its range of applicability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Like the spreading of diseases, the diffusion of innovation and 
information in a population can be analyzed through several math-
ematical models. “Compartimental” models divide the population 
into groups of individuals who are in certain states: sound/in-
fected, ignorant/informed etc. The evolution in time of the pop-
ulations of the various compartments is described by differential 
equations. In the basic version of the models, the population of 
each compartment is seen as homogeneous. A possible improve-
ment consists in the introduction of a network structure; this has 
been done, among others, by Boguna et al. [1,2] in the statistical 
networks formalism (for epidemics) and by Moreno et al. [3,4] in 
the stochastic network formalism (for information). Another pos-
sible approach is to assign a network whose nodes are regarded 
as two-state systems, and to write master equations giving the 
probability that a node passes from one state to the other, as a 
consequence of its internal dynamics and of the state of its neigh-
bours, like in cellular automata models. With a method of this 
kind, Gleeson [5] has found exact solutions of the Bass diffusion 
model, which is based, in the homogeneous version, upon a linear 
publicity term and a quadratic imitation term.

The Bass model has been extensively employed in marketing 
and social sciences [6,7], resulting in large empirical databases of 
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its coefficients, measured in different situations. It has also been 
employed for agent-based simulations of social networks modelled 
on real networks [8] in order to check the effect of the so-called 
“influencers”. In this work we apply to the Bass model the statisti-
cal network description which has been successfully employed for 
epidemics. Our main aim is to follow diffusion in time, from its be-
ginning to its end, in particular in order to see when the diffusion 
peak occurs, in dependence on the exponent γ of scale-free net-
works and on their assortative or disassortative correlations. We 
also study the temporal evolution in each link class, namely we 
measure the diffusion times for individuals who are more or less 
connected, and give quantitative estimates of the anticipation of 
diffusion in the most connected classes.

Our aim is therefore different from that of epidemic models, 
where one is mostly interested into the initial phases of the epi-
demic, into the epidemic threshold and into its dependence on the 
model parameters. Our aim is also different from that of the Glee-
son method, which allows to find phases in parameters space, and 
from that of Moreno et al., which measures the reliability of dif-
fusion and the load on the network, as compared to deterministic 
diffusion.

In recent work using this approach [9] we found that the hubs 
can serve as “monitors” for the adoption of others and may allow 
to estimate the parameters of a diffusion process at its beginning, 
or anyway long before the global peak, in the case when no em-
pirical parameters are available. A technical difficulty encountered 
is the explicit construction of the matrices P (h|k) appearing in the 
network Bass equations. (P (h|k) gives the conditional probability 
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that a node with k links is connected to one with h links.) It is 
not sufficient for our purposes to consider the nearest-neighbour 
average function k̄nn = ∑

h hP (h|k), as done in [1].
In the uncorrelated case it is straightforward to write the ma-

trices P (h|k), but in the assortative and disassortative case this has 
never been done before, or not for large and arbitrary dimension. 
We have devised and given detailed analytical proofs for a method 
which works especially well in the assortative case, the one ac-
tually relevant for most social networks. This allowed us in [9]
to make quantitative comparisons with the uncorrelated case (and 
also with the disassortative case, when applicable).

A further improvement made possible by the network structure 
is to make the publicity term p in the Bass equation heteroge-
neous. The most straightforward way to extend the Bass model in 
this direction is to enhance its “trickle-down” character, by defin-
ing pi coefficients which are larger for the hubs, while still giving 
the some total expenditure for publicity.

Sometimes, however, innovation proceeds from the periphery of 
a system, where it is generated and grows in small niches, until it 
becomes the “disruptive” innovation described by Christensen [11]. 
In that case, the innovation is not launched through a market-
ing campaign, but starts as a stochastic and erratic process; then 
diffusion can accelerate or almost come to a halt several times 
at random, before it reaches some points in the network where 
it can propagate more vigorously. Empirical evidence [12] shows 
that this is often the case for hierarchical inter-firm structures like 
those common in Alpine regions for geographical and logistic rea-
sons [13]. This “trickle-up” process is the main subject of this work 
and can be modelled through pi coefficients which are larger for 
the less connected nodes of the network.

One can also take into account the possibility that some of the 
hubs are “conservative” and act as bottlenecks for diffusion, instead 
of facilitating it. This can be modelled through negative publicity 
coefficients, leading to a major departure from the familiar Bass 
model, where one has to careful adapt the equations in such a 
way to allow temporary negative values of the adoption rate f , but 
avoid negative values of the cumulative adoption F , which would 
be meaningless.

Finally, since our model allows to follow the detailed time evo-
lution of the system through the numerical solution of the N dif-
ferential equations, we can add a stochastic term and study the 
resulting Langevin equations, in particular in the case of “trickle-
up” innovation [10].

The outline of the article is the following. In Sect. 2 we recall 
the network Bass equations introduced in [9] and the main fea-
tures of its numerical solutions. In Sect. 3 we introduce the new 
trickle-up equations and give some numerical solutions. In Sect. 4
we introduce the stochastic trickle-up equations. Sect. 5 contains 
a general discussion of the possible applications of the model and 
our conclusions.

2. Network structure and trickle-down

The network Bass equation introduced in [9] is a system of non-
linear first order differential equations, in which the imitation term 
of the Bass model has been split over N connectivity classes:

dGi(t)

dt
= [1 − Gi(t)]

[
p + iq

N∑
h=1

P (h|i)Gh(t)

]
i = 1, ..., N.

(1)

Gi(t) = Fi(t)/P (i) is the fraction of potential adopters with i links 
that at the time t have actually adopted the innovation. The ma-
trices P (i) = c/iγ (link density) and P (h|i) (link correlations) must 

Fig. 1. Total adoptions ftot in time (blue curve), for an uncorrelated scale-free net-
work with density proportional to 1/i (γ = 1), with N = 15. The violet curve is the 
simple Bass function with the same q and p (q = 0.4, p = 0.03). The function ftot

peaks approx. at t = 4.4, while the simple Bass function peaks approx. at t = 6.1. 
(For interpretation of the references to colour in this figure, the reader is referred 
to the web version of this article.)

Fig. 2. Partial adoptions in time in the different link classes for the same parameters 
as in Fig. 1. The function (a) which has the largest value at t = 0 is f1, representing 
the adoptions of individuals with only 1 link. The function f15, which represents 
the adoptions of the most connected individuals (b), peaks approx. at t = 3.5.

Table 1
Dependence on the scale-free exponent γ of the total diffusion peak time T and of 
the partial diffusion peak time T50 (for individuals with 50 links) in a network with 
largest degree N = 100, in the uncorrelated and assortative case. The peak time 
T50 has been chosen as indicator of the anticipated diffusion in the hubs, instead 
of T100, because in these networks the hubs with 100 links are a very small frac-
tion of the total population, and thus are not significant for statistical monitoring. 
Nevertheless, the anticipation effect is clearly very strong, especially for the assor-
tative networks: for γ = 2, T50 is approx. 20% of T , and for γ = 3 it is approx. 10% 
of T . Note that for uncorrelated networks the total diffusion time is smaller, but 
the anticipation effect is weaker. The dependence T (γ ) in the case of variable p
coefficients pk = c1kγ p is also shown.

γ = 2.0 γ = 2.25 γ = 2.5 γ = 2.75 γ = 3.0

T -Assort. 2.5 4.0 4.8 5.1 5.4
T50-Assort. 0.80 0.64 0.51 0.49 0.49
T -Uncorr. 2.4 2.8 3.5 4.2 4.7
T50-Uncorr. 1.4 1.3 1.3 1.3 1.3
T -Uncorr., var. p 1.6 2.5 3.6 4.8 5.9

obey the Network Closure Condition (NCC; see [14]). Further con-

ditions are normalization 
N∑

k=1
P (k|i) = 1, 

N∑
k=1

P (k) = 1 and positivity 

P (i|k) ≥ 0, P (i) ≥ 0.

2.1. Summary of trickle-down results

A summary of the numerical results obtained in [9] for the 
trickle-down case is given in Figs. 1, 2 and Table 1. Table 2 sum-
marizes results for a wider range of the exponent γ and includes 
for comparison results for the trickle-up case, to be discussed in 
the next section.
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