
Physics Letters A 380 (2016) 2480–2484

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Semiclassical and quantum description of an ideal Bose gas 

in a uniform gravitational field

Rajat K. Bhaduri a, Wytse van Dijk a,b,∗
a Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1 Canada
b Department of Physics, Redeemer University College, Ancaster, ON, L9K 1J4 Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 April 2016
Received in revised form 26 May 2016
Accepted 27 May 2016
Available online 1 June 2016
Communicated by C.R. Doering

Keywords:
BEC
Uniform gravity
Isothermal compressibility

We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a 
uniform gravitational field. It has been claimed by some authors that there is discrepancy between 
the semiclassical and quantum calculations in the thermal properties of such a system. To check this 
claim, we calculate the heat capacity and isothermal compressibility of this system semiclassically as 
well as from the quantum spectrum of the density of states. The quantum calculation is done for a 
finite number of particles. We find good agreement between the two calculations when the number of 
particles are taken to be large. We also find that this system has the same thermal properties as an ideal 
five dimensional Bose gas.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is a body of literature on an ideal Bose gas in a uniform 
gravitational field [1–5]. The gas may be contained in an exter-
nal potential, or a large box, and subjected to a uniform gravita-
tional potential. Using the semiclassical approximation, its thermal 
properties have been calculated analytically in the grand canonical 
formalism [6,7]. Our motivation for studying this simple system 
is to check how closely does the semiclassical approximation fol-
low the results of the quantum calculation. The authors of Ref. [4]
claim that, contrary to previous wisdom, in three dimensions an 
ideal Bose gas in a uniform gravitational field does not undergo 
BEC at a finite temperature. They attribute that to the replacement 
of the discrete quantum energy spectrum with a smooth density 
of states. In the semiclassical approximation, one replaces the dis-
crete density of states by a smooth one, while treating the ground 
state exactly. In the quantum calculation, on the other hand, the 
exact discrete energy levels of the system are calculated to com-
pute the grand canonical ensemble (GCE) and the resulting thermal 
properties. In realistic statistical mechanics problems, one gener-
ally follows the semiclassical route. For the system at hand, the 
quantum calculation is done for a finite number of particles. We 
find that as the number of particles is increased to larger and 
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larger values, the quantum and semiclassical results become very 
close, even across the BEC critical temperature.

In this paper, we pay special attention to the calculation of the 
isothermal compressibility of the Bose gas. Recent experimental 
work on the isothermal compressibility across the Bose–Einstein 
condensation has been reported in Ref. [8] for a harmonically 
trapped gas. The authors suggest that the isothermal compress-
ibility around the critical pressure reveals a second-order nature 
of the phase transition. On the other hand predictions based on 
a number of different mean-field approximations [9] do not lead 
to second-order phase transitions, and the isothermal compress-
ibility does not diverge at criticality. In contrast to these authors, 
we discuss noninteracting systems only. It is well documented that 
in GCE, the isothermal compressibility diverges at the critical tem-
perature Tc in the absence of interparticle interactions [10]. It is 
also known that even a weak interparticle interaction removes this 
divergence [11]. In the present problem, however, gravitation is in-
troduced as a one-body ramp potential, and it is not clear at the 
outset how it will affect the compressibility.

We find that the semiclassical calculation in three dimensions 
of the ideal Bose gas with uniform gravity is equivalent to the 
analysis of a five-dimensional ideal Bose gas without gravity. We 
use this novel approach to obtain results for the specific heat 
and isothermal compressibility. The resulting compressibility is 
divergence-free and continuous across Tc . In the case of heat ca-
pacity, in the absence of the gravitational field, there is a disconti-
nuity in its slope at Tc . Introducing gravitation, or, alternately five 
spatial dimensions, this discontinuity is in the heat capacity itself.
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Fig. 1. The Bose gas is confined to a cylindrical box with the downward gravitational 
force parallel to the y axis.

The calculations were performed by taking a cylindrical con-
tainer, as shown in Fig. 1. In the zx plane, we take a circular disc, 
which is the bottom of the cylinder at y = 0. The atoms in the 
Bose gas are not allowed to take negative values of y. The gravi-
tational field is along the y direction, and the potential is a ramp 
along the positive y axis.

The plan of the paper is as follows. In Sec. 2, the semiclassical 
calculation is done using the phase space approach. It is estab-
lished that one can describe the system under consideration in five 
spatial dimensions, but without the gravitation. The grand poten-
tial is calculated and the critical temperature Tc is obtained. In 
Sec. 3, we give the results for isothermal compressibility and the 
heat capacity. In Sec. 4 a quantum calculation is done to show that 
BEC takes place and the results agree with the semiclassical calcu-
lation.

2. Three-dimensional gas in a uniform gravitational potential

In this section, we show that an ideal Bose gas in three spatial 
dimensions, subjected to a uniform gravitational potential, may be 
looked upon as an ideal five dimensional gravity-free gas. We then 
use the semiclassical method to calculate the critical temperature 
of BEC.

Using the geometry of Fig. 1, the single particle energy is given 
by

ε(p, y) = p2

2m
+ mgy, (1)

where m is the mass of each boson, and g is the gravitational ac-
celeration on the earth’s surface, and p2 = (p2

x + p2
y + p2

z ). The 
grand potential is given by (kB = 1)

�b = T
∑

n

ln (1 − z exp(−εnβ)) = −T
∞∑

l=1

(z)l

l
Z1(lβ), (2)

where β = 1/T , the fugacity z = exp(βμ), and Z1(lβ) is the one-
body partition function in the variable lβ . In the semiclassical ap-
proximation, Z1(β) in the variable β , is given by

Z1(β) = 1

h3

∫
d3 p e−βp2/2m

∫
d2r

L∫
0

dy e−βmgy . (3)

The two-dimensional spatial integral gives the area A of the disc, 
yielding

Z1(β) = A

λ3
T

(1 − exp (−βmgL))

βmg
. (4)

Note that as g → 0, we recover the correct Z1(β) = V

λ3
T

, where 

V = AL is the three-dimensional spatial volume. The thermal 
wavelength λT (obtained from the p integration) is given by

λT =
√

2π h̄2

mT
. (5)

For our present problem with nonzero g and low temperatures, we 
impose the condition that kB T � mgL, i.e. βmgL � 1. Under this 
condition, Eq. (4) reduces to

Z1(β) = A

λ3
T

1

βmg
. (6)

Equation (6) could be rewritten as an ideal five-dimensional parti-
tion function (without gravity)

Z̃1(β) = V 5

λ5
T

(7)

where

V 5 = 2π h̄2 A

m2 g
(8)

has the dimension of (length)5. We write V 5 = (A · V 3), where V 3
is a hypothetical 3-volume. Taking m to be that of a Rb87 atom, we 
find V 3 to be exceedingly small, of the order of 10−18 cubic meter. 
This V 3 is not to be confused with the large three-dimensional 
volume V = AL in which the atoms are confined. In the following, 
we shall calculate the thermal properties of this noninteracting gas 
of bosons in 5-spatial dimensions.

Substituting for Z̃1(β) from Eq. (7) in Eq. (2), we see that the 
grand potential may be written as

�b = −T
V 5

λ5
T

∞∑
l=1

b̃l z
l = −T

V 5

λ5
T

g7/2(z), (9)

where b̃l = 1/l7/2 are the statistical “cluster integrals”. In standard 

notation, 
∞∑

l=1

zl/l7/2 = g7/2(z).

In the gas phase,

n̄5 = N̄

V 5
= −∂�b

∂μ
= 1

λ5
T

∑
l=1

b̃l z
l = 1

λ5
T

g5/2(z). (10)

One puts in the constraint that N̄ = N , and this makes z a function 
of T . The sum on the RHS converges at z = 1, so the above relation 
is valid only for T ≥ Tc . For lower temperatures, the ground state 
starts having macroscopic occupancies. The critical temperature is 
given by

(n̄5λ
5
Tc

) = ζ(5/2), (11)

where λT is at T = Tc , and ζ(5/2) is the Riemann zeta function. It 
is straightforward to deduce from Eq. (11) that the critical temper-
ature is given by

Tc =
(

N̄h̄3 g(2π)3/2

ζ(5/2)A
√

m

)2/5

. (12)

This agrees with the expression for Tc as given by Du et al. [7], 
that was obtained by the standard procedure in three spatial di-
mensions in the presence of the uniform gravitational field. Fur-
thermore it follows that

Nε=0

N
= 1 −

(
T

Tc

)5/2

when T < Tc, (13)
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