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We study the behavior of the s-wave partial cross section σ(k), the Wigner–Smith time delay τ (k), 
and the trapping probability P (k) as function of the wave number k. The s-wave central square well 
is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. 
It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping 
probability, and the time delay, reach their local maxima at different values of k. We show numerically 
that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its 
local maxima. These results are discussed in the light of the standard definition of resonance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

By far, the most widely used scattering function is the cross 
section σ(k). Its analysis provides essential information about all 
kinds of scattering phenomena in physics and it is specially im-
portant in the study of resonances. For sharp resonances, the reso-
nance part of the cross section is generally assumed to be described 
by the famous Breit–Wigner resonance formula. Its importance 
cannot be overestimated since this formula is given in terms of 
the parameters that characterize the resonance; namely, the width 
and position of the (cross section) resonance (see e.g. [1] and ref-
erences therein). This is perhaps the reason why, quite often, the 
term resonance is taken to mean a resonance in the cross section. 
In fact, it is sometimes explicitly stated that the resonance energy 
is defined as that which corresponds to the value of π/2 of the 
resonant part of the phase shift, see e.g. [2]. Furthermore, these 
parameters can be related to some fundamental quantities. For ex-
ample, in nuclear physics, the width (position) corresponds to the 
decay width (mass) of a meta-stable particle [3]. Just as knowledge 
of individual resonances is important, so is the understanding of 
their statistical properties, such as the distribution of their widths 
or spacings, specially in the field of quantum chaos [4].

Since the cross section is defined in terms of the phase shift 
θ(k) and this is composed of a background part and a resonance 
part, to unveil the sought after resonance parameters from the data 
a complicated fitting procedure must be applied [1]. Thus, study of 
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other scattering functions can yield important and complementary 
information about the system.

The Wigner–Smith delay time τ (k) [5] is such a quantity. Ac-
tually, knowledge of τ (k) may be considered necessary in order to 
comply with the most generally accepted definition of resonance 
[6–8]. Namely, a rapid increase in the phase shift through π/2
(modulo π ). How fast? Fast enough so that there is time delay 
since a time delay implies the existence of a meta-stable state and 
vice versa [8].

In the literature resonances are sometimes defined as the poles 
of the scattering matrix S [6,8–10] (for a more mathematical def-
inition see [11]). We shall refer to these as resonance poles to 
distinguish from the scattering resonances discussed above. Cer-
tainly, the two definitions are connected and the scattering res-
onances may be viewed as the manifestation of the resonances 
poles (occurring near the real axis). However, while the defini-
tion of resonance poles is unambiguous, the definition of scattering 
resonances seems to lack certain consistency that we shall try to 
point out in the remainder of this paper.

In this paper we shall focus on comparing the behavior of three 
scattering functions: The s-wave partial cross section σ(k), the 
Wigner–Smith time delay τ (k), and the trapping probability P (k)

(to be defined in the next section). We will show that the “speed 
of the phase shift” l(k) ≡ 2(∂φ/∂k), see Eq. (13) below, can be con-
sidered itself a scattering function and it is the link between the 
other three functions.

One of the objectives of this work is to show that different 
closely related scattering functions do not in general peak at the 
same k values as the resonant part of the cross section and hence 
their study offers complementary information about the resonance 
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properties of the system under study. Although the differences in 
the peak positions of the various scattering functions may be small 
there are underlying conceptual differences that may lead to a 
deeper understanding of resonance phenomena. We shall see that 
the centers of the resonances of l(k) and τ (k) can be identified 
with the real part of the S-matrix poles in k-space, whereas those 
of σφ(k) with the absolute value of the pole.

To be able to get exact results for these quantities we shall 
use the s-wave central square well potential. Despite the simplic-
ity of this potential, it has served not only as a textbook example 
to display basic features of quantum resonance scattering [12,13]
but also as a model for some nuclear systems, see e.g. [2,14–16]. 
Paradoxically, some authors have pointed out that the square well 
does not give rise to “true” non-zero energy resonances [6,17]. The 
reason being that precisely at resonances of the cross section, the 
time delay is at most equal to zero. Others maintain that in spite 
of this the square well does produce Breit–Wigner resonances, thus 
advocating the “less restrictive definition of a resonance as an en-
hancement in the cross section due to a pole in the scattering 
amplitude” [12]. It appears then that the study of other scatter-
ing functions may elucidate the controversy and perhaps induce 
some polishing in the definition of resonance.

The speed of the phase shift l(k) certainly plays a fundamental 
role. For the central square well, characterized by the “strength” α
(given in Eq. (20)), we demonstrate that the local maxima of l(k)

occur just before the resonant part of the cross section reaches 
its local maxima. Further, we show that τ (k) > 0 at all the local 
maxima of l(k) except for very large values of α, where τ (k) → 0.

2. Scattering functions and resonances

In this brief presentation of the basic scattering quantities, we 
consider non-relativistic spinless scattering off finite-range poten-
tials. Specifically, potentials decaying as 1/r or slower and short 
range potentials plus a Coulomb-like potentials are not consid-
ered here. For central finite-range scattering potentials with free-
particle asymptotics, the asymptotic radial wave function ψ
 for 
the orbital angular momentum l is (see e.g., p. 437 in [8] or p. 6 
in [18])

ψ
(k; r) = e−iδ
 + S
(k)eiδ
 , r > a
 , (1)

where a
 , is the interaction radius for the 
-wave, δ
 = kr − 
π/2, 
S
(k) = −e2iθ
(k) is the 
-wave element of the S-matrix, and θ
(k)

is the 
-wave phase shift. S
 can be written in terms of ψ
 and its 
space derivative, evaluated at some r ≥ a
:

S
 = −e−2iδ

1 + ikψ
/ψ

′



1 − ikψ
/ψ
′



(2)

= −e2iθ
 , (3)

where

θ
 = −(kr − 
π/2) + φ
 (4)

and

φ
 = tan−1[kψ
(k; r)/ψ ′

(k; r)] (5)

is the so-called resonant part of the phase shift. Clearly, the phase 
shift θ
(k) is independent of the radius r as long as it is in 
the asymptotic regime (r ≥ a, where a is the interaction radius), 
whereas the resonant part φ
(k) depends on the radius r ≥ a
where it is calculated. For well defined radius of interaction a the 
natural choice for the evaluation of φ is r = a
 , see also Ref. [15].

2.1. Cross section

As shown in most books on quantum mechanics, for central 
potentials the s-wave partial cross section is given by

σ
(k) = 4π(2
 + 1)

k2
sin2(θ
) . (6)

In this work we shall consider only the case 
 = 0; s wave scat-
tering. Dropping the subscript 
 = 0 in all quantities, the s partial 
wave cross section is then written as

σ(k) = 4π

k2
sin2(θ) = π

k2
| 1 + S |2, (7)

where S = − exp (2iθ), k is the wave number in the asymptotic 
region, and θ(k) = −kr + φ. Clearly, the phase shift θ(k) is inde-
pendent of the radius r as long as it is in the asymptotic regime 
(r ≥ a, where a is the interaction radius), whereas the resonant 
part φ depends on the radius r ≥ a where it is calculated. For 
s-waves, if r = a, the phase −ka is the so-called hard sphere shift. 
As is customary [19] and convenient for our purposes, we shall be 
considering the scaled version of the cross section (or scattering 
amplitude):

σθ (k) = k2

π
σ(k) = |1 + S|2 = 4 sin2(θ) (8)

and its resonance part

σφ(k) = 4 sin2(φ) . (9)

An important reason to separate the phase shift into resonant 
and non-resonant parts is that the resonance formula of Breit–
Wigner refers exactly to the resonant part of the phase shift. Since 
this is not the usual case, there are formulas, like that of Fano’s 
resonance shape [20] that can be used to fit and extract the so-
called Breit–Wigner parameters defining the center and the width 
of the resonance [18,21]. These parameters, in the relativistic case, 
provide the (Breit–Wigner) mass and life time of the unstable par-
ticles. As far as we know [1] this requires fitting procedures with 
often several fitting parameters. The point is that in many practi-
cal applications, the splitting of the phase shift is needed to make 
sense of the data.

2.2. Time delay and effective traversal distance

The time delay is a commonly used quantity to characterize 
resonances, see e.g. [6,7,18,22]. In one dimension it is known also 
as the Wigner–Smith time delay and for a particle of mass μ with 
incident momentum h̄k, it is defined as [23,24]

τ (k) = −ih̄S∗ ∂ S

∂ E
= 2h̄

∂θ

∂ E
(10)

= μ

h̄k
2
∂θ

∂k
. (11)

It is the difference between the time that a particle spends in the 
internal region in the presence of a scattering potential minus the 
time the particle would spend if there were no scattering potential 
[25]. τ (k) is directly connected with the existence of meta-stable 
states or the temporary capture of the projectile in the interaction 
region [8]. As mentioned in the Introduction, the established def-
inition of resonance requires that τ (k) be greater than zero. The 
quantity 2(∂θ/∂k) was called the “retardation stretch” by Wigner 
[23]. He used it to derive his causality condition, discussed in most 
books on scattering theory (see e.g. page 103 in [22] or page 466 
in [8]). By splitting the phase shift into resonant and non-resonant 
parts (10) becomes
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