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This paper is devoted to finding the fluctuation–dissipation relation (FDR) for the generalized Langevin 
equation (GLE) with the Boussinesq–Basset (BB) force in which the Stokes friction is generalized to a 
convolution of a memory kernel with the velocity of a Brownian particle. First, the solution of such GLE 
with hydrodynamic backflow is obtained. Using this solution, we find in a simple and easily controllable 
way the time correlation function of the thermal force driving the particles. If the GLE is used with the 
original BB force for pure liquids, the FDR known from the literature is corrected. It is shown that in 
this case the FDR contains, in addition to the known term ∼ t−3/2, a more slowly decaying contribution 
∼ t−1/2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the original Langevin equation (LE) [1], designed to describe 
the Brownian motion (BM) of particles due to collisions with sur-
rounding molecules within a thermal bath, the force acting on the 
particle splits into the macroscopic Stokes friction force and a mi-
croscopic random force. The latter force is delta-correlated in time 
and thus called white noise. The assumption of instantaneous in-
teraction with the environment is an idealization that significantly 
restricts the applicability of the LE on real physical systems [2]. 
Whereas the LE very well describes the experiments with Brow-
nian particles in gases [3], it fails to describe the chaotic mo-
tion of freely buoyant particles in fluids, except long times when 
the LE possesses the same results as the classical Einstein theory 
[4]. The limitations of the LE have been established long ago in 
the work [5], where a hydrodynamic theory of the BM has been 
created (for a review of this and related works on the transla-
tional and rotational BM see [6]). In the hydrodynamic theory, 
the Stokes friction is replaced by the Boussinesq (or Boussinesq–
Basset) force [7,8] that appears naturally as a solution to the lin-
earized Navier–Stokes equations for incompressible fluids [9]. The 
resulting integro-differential equation contains a convolution of the 
particle acceleration with the hydrodynamic memory kernel decay-
ing in time as ∼ t−1/2 and probably represents the first general-
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ization of the LE taking into account the histories in the stochastic 
dynamics. Nowadays, the generalized LE (GLE) is widely used in 
different areas of science from physics, chemistry and biology to 
financial markets (for a number of examples see, e.g., the recent 
papers [10–14]) to implement memory effects in the behavior of 
stochastic systems. Owing to the wide use of the GLE one could 
take for granted that this equation is fully investigated and for-
mal problems concerning its properties and solution have been 
already solved. Although basically this thought is correct, there 
still remains at least one problem that is incorrectly treated in the 
literature. One of the goals of the present note is to show that 
the so-called second fluctuation–dissipation theorem (FDT) (below 
called the fluctuation–dissipation relation, FDR) for the GLE de-
scribing the hydrodynamic BM with the Boussinesq force, as it was 
reported, e.g., in [15–18], and as it appears also in the recent pa-
pers [3,19], should be corrected.

The concepts of the GLE and the corresponding to it FDR were 
well established in the middle of the 20th century [20,21]. The 
GLE (the equation of motion for Brownian particles) considered in 
these works contains as a generalization of the Stokes friction force 
the convolution

FS(t) = −
t∫

0

dt′γ
(
t − t′)υ(

t′) (1)

of a memory kernel γ (t) with the velocity of the particle, υ(t) =
ẋ(t). Then the FDR connects the correlation function of the ran-
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dom force ξ(t) driving the Brownian particle with γ (t) as follows: 
σ(t) = 〈ξ(0)ξ(t)〉 = kBTγ (t), t > 0. As distinct from this relation, 
the equation for motion with the Boussinesq force is more dif-
ficult to analyze. If the memory kernel in this equation is ζB(t), 
the corresponding FDR in the time domain at t > 0 has been ob-
tained as σ(t) = kBT ζ̇B(t) [15–18], which, since ζB ∼ t−1/2, behaves 
as t−3/2. In [22–24] it has been shown by different methods that 
this result misses an important contribution ∼ t−1/2. In this paper 
a more general problem is being considered when the equation 
of motion for the Brownian particle contains a generalized Boussi-
nesq force, in which the original Stokes friction force is written in 
a more general form of the force FS(t). Such a model was stud-
ied in detail in the works [25,26] with ζB(t) as it appears in the 
Boussinesq force. The corresponding FDR has been found in [19]
on the basis of the FDT for a more general case, when the kernel 
ζB(t) may not be specified. Below this result is obtained in a much 
more simple and controllable way. Moreover, for the special case 
of the hydrodynamic Brownian motion in pure liquids we correct 
the FDR derived in [25,26,19] and a number of other papers.

2. Generalized Langevin equation with hydrodynamic 
interactions

The linear model [25,26] under consideration is aimed to de-
scribe the motion of a tracer with mass m in a complex visco-
elastic medium. With no loss of generality, it restricts to the one-
dimensional case. The equation of motion for the tracer reads

mυ̇ = FS + FB + Fext + ξ, (2)

where FS(t) is given by Eq. (1), Fext(t) is an external force, e.g., the 
elastic one, ξ(t) is a colored noise accounting for the interaction of 
the tracer with the heath bath, and the force

FB(t) = −mf

2
υ̇(t) −

t∫
0

dt′ζB
(
t − t′)υ̇(

t′), (3)

comes from the Boussinesq force, the full expression for which is 
−γ υ + FB(t). Here, mf is the mass of the fluid displaced by the 
tracer and γ is the Stokes friction coefficient (γ = 6πηa for a par-
ticle of radius a in a fluid of viscosity η). Note that although most 
often the initial moment for the forces FS(t) and FB(t) is set to 
zero, to reflect the fact that the forces are determined by the parti-
cle velocity and acceleration in all the moments of time preceding 
t , we will use the integrals from t0 to t , with t0 infinitely remote 
from t . This choice, however, does not affect the results presented 
below. It will be shown that obtaining the correct solution of 
Eq. (2) requires that the correlation function Z(t) = 〈υ(0)ξ(t)〉 is 
nonzero at t > 0. In the case of the hydrodynamic BM the correct 
velocity autocorrelation function (VAF) for the Brownian particle is 
obtained only if τ 〈υ(0)ξ(t)〉 = −kBT (τf/πt)1/2, where τ = m∗/γ , 
τf = a2ρf/η, ρf is the fluid density and m∗ = m + mf/2 [22–24]. 
A similar expression can be obtained in the considered more gen-
eral model by Grebenkov and co-workers [25,26,19].

It should be noted that the model proposed in [25] has so far 
no microscopic substantiation. In spite of this, it seems to be a 
promising step to incorporate a description of viscoelastic prop-
erties of a medium (through the generalized Stokes force FS(t)) 
in the successful description of hydrodynamic interactions of a 
spherical tracer with the surrounding fluid (through the Boussi-
nesq force), the latter being confirmed in a number of experiments. 
Generalizing the arguments put forward in [27] for Newtonian flu-
ids, it has been proposed in [19] that the kernels γ (τ ) and ζB(τ )

are in visco-elastic media functionally related to one another: e.g., 
their Laplace transforms are connected as follows:

γ̃ (s) = 2s

9mf
ζ̃ 2

B (s). (4)

3. Solution of the model

The basic equation of the model (2) that includes also the ex-
ternal force Fext = −kx,

m∗υ̇(t) +
t∫

t0

dt′γ
(
t − t′)υ(

t′) +
t∫

t0

dt′ζB
(
t − t′)υ̇(

t′) + kx(t)

= ξ(t), (5)

is most easily solved by transforming it to the equation [28,29]

m∗ V̇ (t) +
t∫

0

dt′γ
(
t − t′)V

(
t′) +

t∫
0

dt′ζB
(
t − t′)V̇

(
t′)

+ k

t∫
0

dt′V
(
t′) = 2kBT , (6)

with the initial condition V (0) = 0. Here, V (t) = Ẋ(t) = 2D(t), 
where X(t) is the mean square displacement (MSD) of the tracer 
and D(t) is its time-dependent diffusion coefficient. The transfor-
mation from (5) to (6), equivalent to the FDT [30], was used for the 
first time in building the hydrodynamic theory of the BM in incom-
pressible fluids [5] (for some historical remarks and a review on 
this pioneering work and related papers see [6]; a generalization 
to compressible fluids is given in another remarkable work [30], 
also exploring the FDT). The velocity autocorrelation function (VAF) 
is related to V (t) by the formula Cυ(t) = 〈υ(t)υ(0)〉 = V̇ (t)/2. It 
is seen from (6) that V̇ (0) = 2kBT /m∗ , so that Cυ(0) = kBT /m∗ . 
This result from the hydrodynamic BM [5], confirmed experimen-
tally [31], does not mean that the fundamental energy equipar-
tition theorem m〈υ2〉/2 = kBT /2 is broken in equilibrium fluids 
[19] or that the above expression for Cυ(0) is incorrect. This mis-
understanding has arisen in some early studies of the VAF for 
one-dimensional BM in a viscous incompressible fluid [27,32–35]. 
The modification of the relation for Cυ(0) is merely due to the 
limitation on the applicability of the Boussinesq force to incom-
pressible fluids, i.e., to times t >> a/c, where c is the velocity of 
sound. At shorter times the compressibility of the fluid must be 
taken into account. As it was explained already in the work [5]
and later proven in [30,36,37], for compressible fluids the equipar-
tition holds in its commonly known form.

The solution to Eq. (6) can be immediately obtained by Laplace 
transform Ṽ (s) = {V (t)} = ∫ ∞

0 dtV (t) exp(−st):

Ṽ (s) = 2kBT

s

[
m∗s + γ̃ (s) + sζ̃B(s) + k

s

]−1

. (7)

From here, the Laplace transform of the VAF is C̃υ(s) = sṼ (s)/2. 
The obtaining of these functions in the time domain is now just a 
technical problem. If the kernel γ (t) is replaced by γ (t) = 2γ δ(t), 
FS(t) becomes the Stokes force −γυ(t) present in the original 
form of the Boussinesq force when ζB = γ (τf/πt)1/2 and ζ̃B(s) =
γ (τf/s)1/2. Having γ̃ (s) = γ , in accordance with Eq. (4) one ob-
tains a less general form of the solution (7),

C̃υ(s) = kBT

m∗

[
s + (τfs)1/2

τ
+ 1

τ
+ k

m∗s

]−1

. (8)

Below we skip the term ∼ k in Eq. (7). Since we want to estab-
lish the FDR, this term is insignificant in the linear theory where 
the correlation properties of the thermal force do not depend on 
the external forces applied to the system [21].
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